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ABSTRACT
This paper presents ExPSO, a Python package designed to simplify parameter selection 
in deep learning models. ExPSO utilizes the Exponential Particle Swarm Optimization 
(ExPSO) method for global optimization problems, which has a superior ability to 
balance exploration and exploitation in search spaces. This package provides a 
user-friendly framework that promises to enhance the performance and evaluation 
of various deep learning algorithms through its exponential selection technique. In 
addition to its primary features, ExPSO is designed with extensibility in mind. It serves 
as a robust foundation for the development of innovative selection methodologies and 
can be easily adapted to incorporate other optimization algorithms and techniques. 
This flexibility ensures ExPSO remains relevant and useful as new advancements in the 
field of optimization and deep learning emerge.
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(1) OVERVIEW

INTRODUCTION
The use of machine learning, including deep learning, 
algorithms has expanded substantially across numerous 
domains [1, 2, 3]. These algorithms are used for various 
tasks, including classification, regression, anomaly 
detection, and segmentation [4]. Training these 
algorithms depends on parameters such as the learning 
rate and the number of epochs. Selecting the right 
parameters is vital. It accelerates convergence, enhances 
generalization, prevents overfitting, and improves 
robustness. This step significantly impacts the model’s 
ability to effectively address real-world problems [5].

To address the challenge of selecting optimal 
parameters, researchers propose several optimization 
methods, including swarm-based selection algorithms 
inspired by social behavior. The complexity of the selection 
problem varies significantly based on the attributes 
and properties of the objective function. Among these 
methods, Particle Swarm Optimization (PSO) stands 
out as a highly durable and efficient swarm-based 
selection algorithm, widely appreciated for its simplicity 
and versatility in various scenarios and applications 
[6, 7, 8]. PSO consistently delivers high performance in 
multi-objective optimization [9], constraint optimization 
[10], and global optimization [11].

Xia, et al [12] introduced Fitness-based Multi-role PSO 
(FMPSO), an extension that adds a sub-social learning 
aspect. This enables the swarm to employ different 
search strategies by utilizing both local and global 
information. Another work presented Expanded Particle 
Swarm Optimization (XPSO) [13], which is based on 
biological and human society’s approaches to discarding 
unused data. XPSO incorporates this into standard PSO 

by utilizing global best and local best as examples and 
assigning each particle a forgetting ability. This improves 
the algorithm’s adaptability and efficiency [14]. Phasor 
Particle Swarm Optimization (PPSO) [15] is a new 
adaptation. It replaces control parameters with a scalar 
phasor angle derived from trigonometric functions, 
offering a new approach to enhance PSO.

However, achieving convergence is not always 
guaranteed, and there is a risk of encountering premature 
convergence. To address this issue, the authors in [16] 
introduce Exponential Particle Swarm Optimization 
(ExPSO), a novel variation of the standard PSO. ExPSO 
incorporates a leaping strategy based on dynamic 
parameters. It divides the swarm population into three 
sub-populations and employs a search strategy using 
an exponential function, enabling particles to make 
significant leaps in the search space. Additionally, it 
adjusts the control of each particle’s velocity range to 
balance exploration and exploitation phases. ExPSO is 
designed to take large jumps at the start of the search, 
followed by smaller jumps for refining solutions in specific 
regions of the search space [17, 18].

The selection method in ExPSO lacks comprehensive 
details for its re-implementation, creating a gap in 
transferring the developed method into a usable function 
for other research groups. Additionally, designing a 
package that excels in multiple criteria, demonstrates 
fast convergence, thoroughly explores the search space, 
and accommodates various types of objective functions 
presents a significant challenge. Meeting these criteria 
requires careful consideration and innovation. Table 1 
shows a comparative summary of key features across 
ExPSO and four established PSO-based algorithms (XPSO, 
PPSO, FMPSO, and TAPSO). The table highlights the 
distinctive capabilities of ExPSO, including its exponential 

FEATURE ExPSO XPSO PPSO FMPSO TAPSO

Exploration-Exploitation 
Balance

Dynamic via 
exponential control

Fixed coefficient decay Phasor-based 
control

Fuzzy logic-
based mutation

Time-adaptive 
parameter tuning

Velocity Control Adaptive exponential 
velocity bounds

 Scalar 
phasor-based 
updates

Mutation-
induced 
adjustments

Time-based 
inertia weight 
updates

Leaping Strategy Exponential leaping 
function

   

Personal/Global Best/
Worst Usage

Full use of pbest, gbest, 
pworst

with forgetting 
mechanism

  

Adaptivity High (dynamic γ and w 
updates)

Medium (decay 
memory)

Medium 
(phasor 
response)

Medium (fuzzy 
decisions)

High (time-
adaptive 
parameters)

DL/ML Framework 
Integration

Supports PyTorch/
TensorFlow APIs

   

Parallel Evaluation Support Parallel training support    

Code Extensibility Modular Python classes    

Table 1 Feature Comparison Between ExPSO and Selected PSO Variants.
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leaping strategy, adaptive subpopulation dynamics, 
and integration with deep learning frameworks, 
which collectively enhance its suitability for complex 
optimization and hyperparameter tuning tasks.

In this paper, we present a Python package that extends 
the Exponential Particle Swarm Optimization (ExPSO) 
algorithm with a robust, accessible implementation 
tailored for deep learning model optimization. This 
implementation surpasses the original by incorporating 
enhanced usability features, including a modular API, 
automatic neural network parameter tuning, and 
integration with machine learning libraries such as 
TensorFlow [19] and PyTorch [20]. We further provide 
deployment-oriented benefits, such as parallelized 
evaluation for faster convergence and customizable 
termination criteria for real-world applications. 
These improvements make ExPSO more practical for 
researchers and practitioners seeking effective and 
reliable hyperparameter optimization in deep learning.

IMPLEMENTATION AND ARCHITECTURE
To enhance the balance between exploration and 
exploitation in swarm-based optimization, we introduce 
a novel variant of Particle Swarm Optimization (PSO). 
Our approach is designed to adaptively regulate particle 
movement using exponential selection pressures and 
velocity control (see Figure 1), enabling the swarm to 
effectively escape local optima and converge toward 
global optima with improved stability.

The complete workflow of our method appears in 
Algorithm 1. This algorithm outlines the initialization, 
evaluation, and iterative update steps of the ExPSO 
optimizer. The population of particles is initialized with 
random positions and velocities within defined bounds. 
Each particle maintains a record of its personal best 
pbest and personal worst pworst positions. The swarm 

also keeps track of the global best pgbest and global 
worst pgworst particles.

Our design features three distinct subpopulations. 
Each subgroup employs its own velocity update strategy, 
utilizing adaptive exponential coefficients. Algorithm 2 
describes this process: particles are divided into three 
subgroups based on their index and remain in these 
groups throughout the algorithm:

•	 The first subgroup uses a velocity equation that 
attracts particles to both their personal best and 
worst positions, as well as their global best and worst 
positions.

•	 The second subgroup excludes the global worst 
components, simplifying the trajectory.

•	 The third subgroup follows classic PSO, using only 
personal and global best terms.

Each velocity update employs an exponential decay 
term:
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which increases convergence pressure as particles 
approach their personal best, thus refining local search. 
This formulation enables adaptive intensification or 
diversification based on particle experience.

To further manage convergence behavior and 
avoid premature stagnation, we incorporate a Velocity 
Controller described in Algorithm 3. This mechanism 
adaptively compresses the velocity range after a specified 
number of iterations by scaling the velocity bounds and 
updating the inertia weight, w, dynamically using:
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Run ExPSO 

Apply velocity damping using Algorithm 2 

Adjust the particle velocities using Algorithm 1 

Update particle positions 

Update the personal and global positions 

Update the neural network parameters 

Termination criterion of ExPSO 
Initialization phase 

Figure 1 ExPSO approach.
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This damping mechanism ensures smoother 
convergence by gradually reducing the exploration radius 
while maintaining directional diversity. The optimization 
loop continues until a stopping criterion is met, typically 
based on the maximum number of function evaluations 
MaxFES. At each iteration, the fitness of each particle 
is evaluated, and the personal/global best and worst 
records are updated accordingly.

To construct an effective model with optimal 
parameters, specific steps are followed. First, data are 
processed and split into training, validation, and test sets. 
The training and validation sets are used to develop the 
model. The test set evaluates the model’s performance 
and generalization.

During the parameter selection phase, the user 
employs the ExPSO package to find the most suitable 
parameters. This package is built around a primary 
Python file that includes several PyTorch classes, such 
as ExPSO and Particle. These classes work together to 
implement the ExPSO algorithm effectively. The ExPSO 
class is initialized with several parameters, including 

the objective function, dimensions, number of particles, 
maximum iterations, bounds, and runs. Below, we 
provide a detailed description of each parameter:

•	 Objective function (ObjFunction): The function that 
the algorithm aims to optimize using a given set of 
input parameters.

•	 Dimensions (D): Refers to the shape or size of the 
input parameters in the objective function.

•	 The number of particles (nPop): The number of 
particles used to explore the solution space. A higher 
number of particles can improve solution quality, but 
it also increases computational cost.

•	 Maximum iteration number (MaxIt): Sets the 
maximum number of times the algorithm runs before 
it stops. Set this to a reasonable number to balance 
good solutions and to avoid long runtimes.

•	 Upper and lower bounds (ub, Ib): These are the limits 
within which the algorithm searches for solutions for 
each input parameter. Properly set bounds ensure 
the algorithm searches within the appropriate range.

Input:  
 

- Optimization problem with  variables 
- Population size  
- Maximum number of function evaluations  

Output: Fitness value  of the globally best solution found 
 1 Set initial parameters:  

2 For each particle  in the population  
3  Randomly initialize position within search bounds 
4  Randomly initialize velocity  
5  Evaluate fitness  
6  Set personal best and personal worst  
7 end For 

 8 Identify global best and global worst from the population 
 9 While stopping condition not met (e.g., FES < MaxFES): 
 10  For each particle i = 1 to N: 
 11   Update velocity using ExPSO velocity equation (Algorithm 1) 
 12   Clip velocity:    
 13   Update position:   
 14   Clip position:  
 15   end For 
 16  end while 
 17 For each particle i: 
 18  Evaluate fitness  
 19  If f( ) better than  then update =  
 20  If f( ) worse than f( ), then update =  
 21 end For 
 22 Update and based on the new population 
 23 Update dynamic parameter  
 24 Apply velocity damping using Algorithm 2 
 25 end while 

Algorithm 1 ExPSO Algorithm.
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•	 Number of runs (runs): Specifies how many times the 
algorithm runs with the same parameters to ensure 
robust and reliable results.

When the user invokes the optimize() method, the ExPSO 
algorithm starts by creating multiple combinations 
of parameters, which are randomly initialized. These 
combinations are then used in multiple iterations of 
the algorithm. During each iteration, the particles 
are converted into parameter sets and the algorithm 
is trained. Through iterative communication, the 
particles collaborate to identify the optimal solution. 
The objective is to discover a parameter combination 
that results in the most effective model. The flowchart 
of the optimization algorithm is detailed in [16]. Upon 
termination, the ExPSO algorithm extracts and stores 
the parameters of the best-performing model within 
the instantiated ExPSO object. Various factors influence 
the computation time of ExPSO, including the number 
of particles, the number of iterations, and the maximum 
allowed iterations. Additionally, supplementary 
constraints may impact the computation time 

by causing the optimization process to stop if no 
improvements are detected over a series of consecutive 
iterations.

The ExPSO package is designed to optimize a range 
of problems by treating them as a black box, making it 
particularly suitable for parameter selection tasks. This 
package supports a variable number of parameters and 
accommodates multiple parameter types across various 
algorithms. It is especially beneficial for researchers 
seeking to investigate the impact of various selection 
methods on the effectiveness of their models. The 
package enables users to visualize multiple metrics, 
providing insight into how different parameter settings 
affect model performance.

•	 GlobalBestPosition: Represents the optimal or near-
optimal solution obtained by the ExPSO algorithm in 
the search space.

•	 GlobalBestCost: Represents the optimal or near-
optimal value achieved by the ExPSO algorithm.

•	 WorstSol: Refers to the highest value of the best 
cost found during the optimization process. It helps 

Input: , // is the exploration number of 
iterations. 
 1  

2  
3 While ( ), do 
4   
5   
6   

7 end while 
Algorithm 3 Velocity Controller Algorithm.

Input: // is the population size,  
// are the number of particles in subpopulations 
 1 While ( ), do 

2  If  
3   

 
4   

 
5  Else if  
6    
7  Else 
8    
9 end while 

Algorithm 2 ExPSO Subpopulations Algorithm.
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evaluate the quality of the obtained solutions and 
identify the worst performing solution.

•	 MEAN: Represents the average value of the best cost 
found across multiple optimization runs.

•	 BestSol: Refers to the lowest value of the best cost 
found during the optimization process.

•	 STD (Standard Deviation): Refers to the standard 
deviation, which is often used to assess the diversity 
or convergence of the obtained solutions. A lower 
standard deviation indicates that the solutions are 
more closely clustered and concentrated around the 
optimal solution.

•	 AvgFES (Average Function Evaluations): Represents 
the average number of function evaluations 
performed during the optimization process. It 
indicates the computational effort required to find 
the optimal solution.

By leveraging the flexibility of PyTorch and its ability 
to define new structures, users can customize the 
optimization process and experiment with different 
variations of the ExPSO algorithm.

IMPLEMENTATION
PyTorch was selected for this work due to its dynamic 
computation graph (eager execution), which provides 
more flexibility and transparency during model 
development, debugging, and implementation of 
custom optimization or attack strategies. This is 
particularly advantageous for research-focused tasks 
such as counterfactual generation, adversarial attacks, 
and iterative model updates. Compared to TensorFlow 
[19] and Keras [22], PyTorch offers more intuitive control 
flow and better support for low-level operations, which 
are essential when fine-tuning optimization processes or 
integrating explainability components [20]. While (Just 
After eXecution (JAX) [23] is also a strong candidate for 
high-performance computing, its functional paradigm 
and limited debugging support make PyTorch more 
suitable for iterative and experimental work. While 
JAX provides strong capabilities for high-performance 
and accelerated computing through its functional 
programming paradigm and XLA compilation, the limited 
flexibility in debugging and dynamic execution makes 
PyTorch a more practical and accessible framework 
for iterative development and experimental research 
workflows.

HYPERPARAMETERS
In our proposed approach, we adopted a carefully 
tuned set of parameters to balance exploration, 
exploitation, and diversity within the swarm. The 
exponential weight parameter (a = 2) ensures 
moderate sensitivity to fitness differences, allowing 
meaningful selection pressure without premature 

convergence. The cognitive and social acceleration 
coefficients (b = c = 2) are set to their empirically 
optimal values, maintaining a stable trade-off 
between individual learning and collective guidance. 
To avoid stagnation in local optima, we introduce 
worst-case coefficients (d = e = –1) that occasionally 
push particles away from suboptimal regions. The 
cognitive scaling factor (c1 = –1) promotes individual 
diversity, while the social scaling factor (c2 = 2) 
fosters cohesion within the swarm. We maintain a 
relatively high inertia weight (w = 0.9) to encourage 
broader exploration, and apply a damping factor (r 
= 0.9) to stabilize the velocity updates. During the 
exploration phase, 10 iterationsare executed with a 
controlled velocity decay (k = 0.2) to gradually narrow 
the search. Additionally, the swarm is partitioned into 
three equally sized subpopulations (N1 = N2 = N3 = 10) 
to ensure parallel and diversified exploration across 
multiple regions of the solution space.

QUALITY CONTROL
To ensure the reliability and correctness of the ExPSO 
library, we developed a comprehensive unit testing suite 
using the pytest framework. These unit tests validate the 
core functionalities of the package, including particle 
initialization, velocity and position updates, fitness 
evaluations, convergence criteria, and integration with 
external deep learning frameworks such as PyTorch and 
TensorFlow. Table 2 summarizes the unit tests that verify 
core functionalities of the ExPSO algorithm, all of which 
have successfully passed, ensuring reliable initialization, 
updates, evaluation, and integration.

EXAMPLE USAGES
We provide two examples designed to help users become 
acquainted with the ExPSO package. These examples 
gradually increase in complexity, allowing users to 
gain familiarity with the package. The full code for the 
experiments is available on our GitHub site.

Example 01: ExPSO with Rosenbrock function
In this example, we demonstrate the utilization of 
the ExPSO package for a straightforward parameter 
optimization task. Our objective is to find optimal 
solutions for the Rosenbrock function [21] (Figure 2). 
The code begins by importing necessary libraries (lines 
1 and 2) and initializing inputs such as runs, Ib, ub, 
D, nPop, and MaxIt (lines 3–8). We then define the 
objective function specifically for the Rosenbrock 
function and instantiate an ExPSOCIass (lines 9 and 
12). The optimization process starts with a call to the 
optimize() function (line 14), and the resulting best 
parameters are captured in a variable presented on 
line 16. Figure 3 illustrates the multiple metric outputs 
obtained from executing the code.
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Example 02: ExPSO with MLP Model
In this example, we illustrate the application of ExPSO 
for fine-tuning the parameters of a Multilayer Perceptron 
(MLP) model. Figure 4 outlines the initial steps familiar 
from the previous example: importing necessary 
modules, initializing an ExPSO instance, and initiating 
the optimization process. However, instead of employing 
the Rosenbrock function, we define an objective function 
tailored for the MLP model, detailed in Figure 5. The 
objective function calculates the loss by invoking the MLP 

method, as illustrated in Figure 6. This method utilizes 
the “neurons” and “epochs” values obtained in each 
iteration (lines 2 and 3) to train the model, as shown in 
lines 7 and 17.

ANALYSIS USING BENCHMARK DATA
To validate the effectiveness of ExPSO across diverse 
scenarios, we selected a range of optimization algorithms 
for comparison. For standard benchmark functions (both 
unimodal and multi-modal), we included ExPSO, Phasor 

TEST NAME PURPOSE STATUS

test_initialize_particles() Verifies correct generation of initial positions and velocities Passed

test_velocity_update() Ensures accurate computation of velocity updates per ExPSO equations Passed

test_position_update() Checks boundary handling and correct position updates Passed

test_fitness_evaluation() Confirms objective function evaluation returns valid and expected outputs Passed

test_global_best_selection() Validates that global best particle is correctly identified and tracked Passed

test_integration() Tests compatibility with PyTorch models and parameter space setup Passed

test_termination_criteria() Checks early stopping and max iteration limits work as intended Passed

test_invalid_input_handling() Ensures graceful handling of invalid configuration or input parameters Passed

test_initialize_particles() Verifies correct generation of initial positions and velocities Passed

Table 2 Unit Tests for ExPSO Library Functions.

Figure 2 Illustrative example of ExPSO with Rosenbrock function.

Figure 3 Output result of ExPSO after optimizing for the Rosenbrock function.
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Particle Swarm Optimization (PPSO) [15], Fitness-based 
Multi-role PSO (FMPSO) [12], and eXpanded PSO (XPSO) 
[13] to ensure fair assessment across different landscape 
complexities, highlighting the balance between 
exploration and exploitation achieved by our proposed 
method. For real-world engineering problems, algorithms 
like PPSO, FMPSO, MSPSO, XPSO, TAPSO, EO, DSOS, HHO, 
IRGA, EBO with CMAR, and IMODE were chosen due to 
their proven performance in handling constrained, high-
dimensional, and non-convex tasks. We conducted tests 
on 12 benchmark functions and compared its results 
with three state-of-the-art algorithms. These benchmark 
functions, extensively described in [16], cover a variety of 
problem types and dimensions, specifically 12 scalable 

problems with dimension D = 30. The chosen functions 
represent different search landscape characteristics; 
some are unimodal with a single global minimum, which 
tests the algorithm’s exploitation ability, while others 
are multimodal with numerous local minima, testing 
the algorithm’s exploration capabilities. The benchmark 
functions include:

•	 Unimodal benchmark functions (f1 to f6)—namely, 
the Sphere function (f1) [24], Schwefel’s functions 
v2.22 (f2), v1.2 (f3), and v2.21 (f4) [25], Rosenbrock 
function (f5) [21], and Step function (f6) [26], 
respectively—are used to evaluate exploitation 
capability and algorithm convergence performance.

Figure 4 Illustrative example of ExPSO with MLP model.

Figure 5 MLP model objective function.

Figure 6 An illustrative example of train and evaluating the MLP model with ExPSO parameters.
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•	 Multimodal benchmark functions (f7 to f12)—namely, 
Schwefel’s function (f7) [25], Rastrigin’s function (f8) 
[25], Ackley’s function (f9) [27], Griewank function 
(f10) [28], Generalized Penalized function 1 (f11) [29], 
and Generalized Penalized function 2 (f12) [30], 
respectively—are used to evaluate exploration 
capability and the ability to handle multiple local 
optima.

Tables 3 and 4 present the comparison results, detailing 
average values (Avg.) and standard deviations (S.D.) across 
each experimental setup. For unimodal functions, Table 3 
shows that all algorithms successfully identify the global 
optimum in most cases. ExPSO consistently achieves 
the global minimum across all 30 runs for functions f1 
to f6, with average values of 0.00e+00, indicating not 
only exact convergence but also high numerical stability. 
Standard deviations for ExPSO in these cases are either 
exactly zero or on the order of 1e−10, which is significantly 
lower than competing methods, where deviations often 
range from 1e−4 to 1e+01. This highlights ExPSO’s strong 
exploitation capabilities, attributed to its exponential PSO 
strategy.

For multimodal functions, Table 4 reveals that ExPSO 
consistently identifies the global minimum for all 
functions tested. In contrast, PPSO, XPSO, and FMPSO 

occasionally fail to achieve the global minimum for 
specific functions (i.e., PPSO for f7, XPSO for f10, and FMPSO 
for f8 and f10). The repeated achievement of 0.00e+00 
values across multiple runs, along with consistently lower 
standard deviations compared to other methods, further 
underscores ExPSO’s robust and repeatable exploration 
capabilities.

ANALYSIS USING ENGINEERING DATA
In this section, ExPSO is tested on four well-known 
engineering design problems: Pressure Vessel Design 
(PVD) [31], Compression Spring Design (CSD) [32], Welded 
Beam Design (WBD) [33], and Speed Reducer Design 
(SRD) [34]. These problems have different constraints 
that should not be violated by the optimal solution(s) 
obtained, and thus, a constraint handling method must 
be utilized.

Tables 5–8 present comprehensive performance 
comparisons of twelve optimization algorithms across 
four classic engineering design problems. The results 
demonstrate varying algorithmic effectiveness depending 
on the problem characteristics. For the Pressure Vessel 
Design (PVD) problem, the results indicate that ExPSO, EO, 
and DSOS achieve nearly identical minimum cost values. 
In the Coil Spring Design (CSD) task, most algorithms, 
except XPSO, converge to comparable solutions, while 

METHOD RESULT f1 f2 f3 f4 f5 f6

ExPSO Avg. 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

S.D. 0.00e+00 0.00e+00 0.00e+00 0.00e+00 3.17e+09 0.00e+00

XPSO Avg. 2.64e–05 0.00e+00 8.33e+00 1.81e–01 9.25e+00 0.00e+00

S.D. 1.24e–04 5.65e–10 3.31e–04 2.05e–01 9.16e+00 0.00e+00

PPSO Avg. 0.00e+00 0.00e+00 0.00e+00 7.99e–05 0.00e+00 0.00e+00

S.D. 5.54e–10 1.70e–09 1.25e–10 1.52e–04 1.18e–09 0.00e+00

FMPSO Avg. 0.00e+00 0.00e+00 0.00e+00 0.00e+00 7.97e–01 0.00e+00

S.D. 2.43e–09 6.30e–10 4.55e–10 1.50e–10 1.62e+00 0.00e+00

Table 3 Comparison of optimization algorithms on unimodal benchmark functions.

METHOD RESULT f7 f8 f9 f10 f11 f12

ExPSO Avg. –1.25e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

S.D. 1.91e–01 0.00e+00 0.00e+00 0.00e+00 2.73e–09 3.21e–09

XPSO Avg. –1.08e+04 3.98e+00 0.00e+00 3.53e–02 3.44e–08 0.00e+00

S.D. 3.19e+02 6.12e+02 6.12e–10 3.41e–02 1.36e–07 7.51e–10

PPSO Avg. –1.19e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

S.D. 7.26e+02 1.96e–10 2.80e–10 2.24e–10 3.07e–09 1.27e–10

FMPSO Avg. –1.10e+04 2.28e+01 0.00e+00 5.34e–02 1.38e–02 2.20e–03

S.D. 4.22e+02 1.64e+01 3.66e–10 4.58e–02 5.92e–02 4.47e–03

Table 4 Comparison of optimization algorithms on multimodal benchmark functions.
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ExPSO, DSOS, HHO, EBOwithCMAR, and IMODE attain the 
same optimal result. For the Welded Beam Design (WBD) 
problem, ExPSO delivers a solution similar to EO, DSOS, 
EBOwithCMAR, and IMODE, surpassing the remaining 
algorithms in performance. Statistical analysis further 
shows that the mean solution produced by ExPSO is very 
close to its best outcome, confirming its consistency and 
robustness across multiple runs. In the Speed Reducer 
Design (SRD) problem, comparison of the optimal and 
statistical results reveals that EBOwithCMAR attains 
the best overall cost (2639.499), whereas most other 
algorithms yield 2994.424. In contrast, FMPSO, XPSO, and 
HHO record slightly higher costs of 3048.377, 3060.097, 
and 2997.639, respectively.

CLASSIFICATION ANALYSIS
In Figure 7, we present a detailed comparison of the 
performance achieved using the proposed ExPSO 
algorithm against four baseline optimizers across five 
different model architectures: CNN [35], LSTM [36], 
XLNet [37], MLP [38], and VGGNet [39]. The experiments 
were conducted on benchmark classification datasets, 
including MNIST [40] for image-based models (CNN and 
VGGNet), and IMDB [41] for text-based models (LSTM and 
XLNet), while the UCI Breast Cancer dataset was used for 
the MLP model. Each dataset includes clearly defined 
class labels—for example, digit categories (0–9) in MNIST, 
sentiment polarity (positive/negative) in IMDB, news topic 
categories in AG News, and benign vs. malignant in the 
breast cancer dataset.

Across all tested models, ExPSO consistently achieves 
the highest classification accuracy, demonstrating 
strong robustness and generalization across both 
deep and traditional neural architectures. On the CNN 
model, ExPSO reaches an accuracy of 97%, significantly 
outperforming PSO (91.4%), QPSO (92%), and FastPSO 
(90%), suggesting superior early-stage exploration 
capabilities. Similarly, for the LSTM model, ExPSO again 
achieves 97%, surpassing PSO (92.11%) and QPSO 
(94%), indicating that its fine-grained control of position 
updates is particularly effective in sequence-based 
learning tasks. In more complex transformer-based 
architectures, such as XLNet, ExPSO outperforms QPSO 
(81%) and FastPSO (82%), notably by 6 percentage 

points, which underscores its efficiency in navigating 
high-dimensional attention-based search spaces. 
Even in simpler feedforward networks, such as MLP, 
where optimizer performance tends to converge, 
ExPSO still maintains a slight edge at 89%, compared 
to QPSO at 88% and FST-PSO at 87%, reflecting its 
stable optimization behavior. Finally, on VGGNet, a 
deep convolutional architecture, ExPSO attains 92%, 
considerably outperforming PSO (85.19%) and FastPSO 
(87%), further demonstrating its ability to escape 
suboptimal minima in deep layered structures. These 
consistent improvements across a variety of models 
validate ExPSO’s design as a balanced optimizer capable 
of adapting to both the structural complexity and 
training dynamics of modern learning systems.

The performance results reveal several consistent 
trends that underscore the effectiveness of ExPSO as 
an optimization framework. Notably, performance gains 
are more pronounced in complex architectures such 
as CNN, LSTM, and XLNet, where ExPSO demonstrates 
its capacity to scale with increasing model depth and 
parameter complexity. This suggests that ExPSO is 
particularly well-suited for high-dimensional and non-
convex search spaces that often challenge conventional 
PSO variants. Unlike standard PSO and FastPSO, which 
exhibit fluctuating performance across tasks, ExPSO 
displays stable convergence behavior, maintaining a 
narrow and consistently high accuracy range of 87% 
to 97%.

LIMITATIONS
While the results demonstrate that ExPSO performs 
competitively across a range of benchmark functions, 
engineering problems, and classification models, several 
limitations remain that warrant further investigation. First, 
although ExPSO achieves high accuracy and repeatability 
in both unimodal and multimodal optimization tasks, its 
current performance evaluation is limited to standard 
benchmark functions (f1–f12) and four engineering design 
scenarios. A broader evaluation on real-world, noisy, and 
dynamic optimization problems—such as scheduling, 
resource allocation, and neural architecture search—
would provide a more comprehensive understanding 
of its robustness under diverse conditions. Second, 

F EXPSO PPSO FMPSO MSPSO XPSO TAPSO EO DSOS HHO IRGA EBCMAR IMODE

f(x) 6059 6216 6771 6090 44232 6424 6059 6059 6064 6118 6123 6156

Best 6059 6216 6771 6090 44232 6424 6059 6059 6064 6118 6123 6156

Worst 7332 13846 27782 7461 99145 6424 7544 6820 7544 7544 7473 20218

Mean 6197 6473 17380 6547 70587 6424 6641 6095 6684 6863 6979 9355

S.D. 350 1852 10507 791 27522 0.000 566 148 425 372 399 3079

Table 5 Comparison of optimum results and statistical results for the PVD problem. Values represent the objective function f(x), with 
Best, Worst, Mean, and Standard Deviation (S.D.) across 30 independent runs. Bold values indicate the best performance for each metric.
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the exponential search component, which enhances 
convergence, introduces moderate computational 
overhead. While this is mitigated through parallelism 
and adaptive control, the exact trade-off between added 
complexity and optimization gain remains to be formally 
quantified. In future work, we plan to benchmark 
computational time and memory usage across scalable 
high-dimensional problems to further validate ExPSO’s 
efficiency in time-constrained or resource-limited 
environments. Third, while ExPSO supports integration 
with PyTorch and TensorFlow, current deep learning tests 
focus primarily on classification tasks. Future iterations 
will explore regression, generative modeling, and 
reinforcement learning settings to better understand 
ExPSO’s applicability across varied ML pipelines. Finally, 
the optimizer’s parameter sensitivity (particularly with 
respect to subpopulation size, velocity damping factor, 
and exponential decay rate—deserves deeper empirical 
tuning). Automated meta-optimization or self-adaptive 
control mechanisms could enhance usability by reducing 
manual tuning and improving generalizationacross tasks.

(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where 
Python can be run (GNU/Linux, Mac OSX, Windows).

PROGRAMMING LANGUAGE
python 3.6.1+

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
pytorch, numpy, math, tensorflow, keras, scikit-learn

SOFTWARE LOCATION
Archive

Name: Codeocean
�Persistent identifier: https://codeocean.com/capsu 
le/5975162/tree/v1
Licence: GNU General Public License (GPL)
Publisher: insaf kraidia
Version published: 1.0
Date published: 12/12/23

Code repository
Name: Github
Identifier: https://github.com/insafkraidia/ExPSO
Licence: GNU General Public License (GPL)
Date published: 13/06/23

LANGUAGE
English

(3) REUSE POTENTIAL

The ExPSO package stands out by potentially supporting 
researchers across diverse fields with comparable 
methodologies. The GitHub repository offers a range of 
examples to help users become proficient with ExPSO. 
Starting from fundamental concepts and progressing to 
more advanced applications, these examples facilitate 
gradual familiarity with the package. Users are invited to 
provide feedback via the GitHub issue tracker or directly 
to the authors via email.

Figure 7 Accuracy Comparison of ExPSO Library with FST-PSO, Pyswarms, QPSO, and FastPSO Libraries for Deep and Machine Learning 
Models.
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