ExPSO-DL: An Exponential
Particle Swarm Optimization
Package for Deep Learning
Model Optimization

INSAF KRAIDIA

KHELIL KASSOUL

NAOUFEL CHEIKHROUHOU
SAIMA HASSAN

SAMIR BRAHIM BELHAOUARI

*Author affiliations can be found in the back matter of this article

ABSTRACT

This paper presents ExPSO, a Python package designed to simplify parameter selection
in deep learning models. ExPSO utilizes the Exponential Particle Swarm Optimization
(ExPSO) method for global optimization problems, which has a superior ability to
balance exploration and exploitation in search spaces. This package provides a
user-friendly framework that promises to enhance the performance and evaluation
of various deep learning algorithms through its exponential selection technique. In
addition to its primary features, ExPSO is designed with extensibility in mind. It serves
as a robust foundation for the development of innovative selection methodologies and
can be easily adapted to incorporate other optimization algorithms and techniques.
This flexibility ensures ExPSO remains relevant and useful as new advancements in the
field of optimization and deep learning emerge.
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(1) OVERVIEW

INTRODUCTION

The use of machine learning, including deep learning,
algorithms has expanded substantially across numerous
domains [1, 2, 3]. These algorithms are used for various
tasks, including classification, regression, anomaly
detection, and segmentation [4]. Training these
algorithms depends on parameters such as the learning
rate and the number of epochs. Selecting the right
parameters is vital. It accelerates convergence, enhances
generalization, prevents overfitting, and improves
robustness. This step significantly impacts the model’s
ability to effectively address real-world problems [5].

To address the challenge of selecting optimal
parameters, researchers propose several optimization
methods, including swarm-based selection algorithms
inspired by social behavior. The complexity of the selection
problem varies significantly based on the attributes
and properties of the objective function. Among these
methods, Particle Swarm Optimization (PSO) stands
out as a highly durable and efficient swarm-based
selection algorithm, widely appreciated for its simplicity
and versatility in various scenarios and applications
[6, 7, 8]. PSO consistently delivers high performance in
multi-objective optimization [9], constraint optimization
[10], and global optimization [11].

Xia, et al [12] introduced Fitness-based Multi-role PSO
(FMPSO), an extension that adds a sub-social learning
aspect. This enables the swarm to employ different
search strategies by utilizing both local and global
information. Another work presented Expanded Particle
Swarm Optimization (XPSO) [13], which is based on
biological and human society’s approaches to discarding
unused data. XPSO incorporates this into standard PSO

by utilizing global best and local best as examples and
assigning each particle a forgetting ability. This improves
the algorithm’s adaptability and efficiency [14]. Phasor
Particle Swarm Optimization (PPSO) [15] is a new
adaptation. It replaces control parameters with a scalar
phasor angle derived from trigonometric functions,
offering a new approach to enhance PSO.

However, achieving convergence is not always
guaranteed, and there s a risk of encountering premature
convergence. To address this issue, the authors in [16]
introduce Exponential Particle Swarm Optimization
(ExPSO), a novel variation of the standard PSO. ExPSO
incorporates a leaping strategy based on dynamic
parameters. It divides the swarm population into three
sub-populations and employs a search strategy using
an exponential function, enabling particles to make
significant leaps in the search space. Additionally, it
adjusts the control of each particle’s velocity range to
balance exploration and exploitation phases. ExPSO is
designed to take large jumps at the start of the search,
followed by smaller jumps for refining solutions in specific
regions of the search space [17, 18].

The selection method in ExPSO lacks comprehensive
details for its re-implementation, creating a gap in
transferring the developed method into a usable function
for other research groups. Additionally, designing a
package that excels in multiple criteria, demonstrates
fast convergence, thoroughly explores the search space,
and accommodates various types of objective functions
presents a significant challenge. Meeting these criteria
requires careful consideration and innovation. Table 1
shows a comparative summary of key features across
ExPSO and four established PSO-based algorithms (XPSO,
PPSO, FMPSO, and TAPSO). The table highlights the
distinctive capabilities of ExPSO, including its exponential

FEATURE ExPSO XPSO

PPSO FMPSO TAPSO

Exploration-Exploitation Dynamic via

Fixed coefficient decay

Phasor-based  Fuzzy logic- Time-adaptive

Balance exponential control control based mutation  parameter tuning
Velocity Control Adaptive exponential x Scalar Mutation- Time-based
velocity bounds phasor-based  induced inertia weight
updates adjustments updates
Leaping Strategy Exponential leaping x x x x
function
Personal/Global Best/ Full use of pbest, gbest, with forgetting v 4 v
Worst Usage pworst mechanism
Adaptivity High (dynamic y and w Medium (decay Medium Medium (fuzzy High (time-
updates) memory) (phasor decisions) adaptive
response) parameters)
DL/ML Framework Supports PyTorch/ x x x x

Integration TensorFlow APIs

Parallel Evaluation Support  Parallel training support %

Code Extensibility Modular Python classes  x

Table 1 Feature Comparison Between ExPSO and Selected PSO Variants.
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leaping strategy, adaptive subpopulation dynamics,
and integration with deep learning frameworks,
which collectively enhance its suitability for complex
optimization and hyperparameter tuning tasks.

Inthis paper, we present a Python package that extends
the Exponential Particle Swarm Optimization (ExPSO)
algorithm with a robust, accessible implementation
tailored for deep learning model optimization. This
implementation surpasses the original by incorporating
enhanced usability features, including a modular API,
automatic neural network parameter tuning, and
integration with machine learning libraries such as
TensorFlow [19] and PyTorch [20]. We further provide
deployment-oriented benefits, such as parallelized
evaluation for faster convergence and customizable
termination  criteria  for real-world applications.
These improvements make ExPSO more practical for
researchers and practitioners seeking effective and
reliable hyperparameter optimization in deep learning.

IMPLEMENTATION AND ARCHITECTURE

To enhance the balance between exploration and
exploitation in swarm-based optimization, we introduce
a novel variant of Particle Swarm Optimization (PSO).
Our approach is designed to adaptively regulate particle
movement using exponential selection pressures and
velocity control (see Figure 1), enabling the swarm to
effectively escape local optima and converge toward
global optima with improved stability.

The complete workflow of our method appears in
Algorithm 1. This algorithm outlines the initialization,
evaluation, and iterative update steps of the ExPSO
optimizer. The population of particles is initialized with
random positions and velocities within defined bounds.
Each particle maintains a record of its personal best
pbest and personal worst pworst positions. The swarm

Termination criterion of ExXPSO

Initialization phase

also keeps track of the global best pgbest and global
worst pgworst particles.

Our design features three distinct subpopulations.
Each subgroup employs its own velocity update strategy,
utilizing adaptive exponential coefficients. Algorithm 2
describes this process: particles are divided into three
subgroups based on their index and remain in these
groups throughout the algorithm:

* The first subgroup uses a velocity equation that
attracts particles to both their personal best and
worst positions, as well as their global best and worst
positions.

* The second subgroup excludes the global worst
components, simplifying the trajectory.

* The third subgroup follows classic PSO, using only
personal and global best terms.

Each velocity update employs an exponential decay
term:

- i )

which increases convergence pressure as particles
approach their personal best, thus refining local search.
This formulation enables adaptive intensification or
diversification based on particle experience.

To further manage convergence behavior and
avoid premature stagnation, we incorporate a Velocity
Controller described in Algorithm 3. This mechanism
adaptively compresses the velocity range after a specified
number of iterations by scaling the velocity bounds and
updating the inertia weight, w, dynamically using:

(2)

<><

Run ExPSO

Adjust the particle velocities using Algorithm 1

Update particle positions

Update the personal and global positions

Apply velocity damping using Algorithm 2

Figure 1 EXPSO approach.

Update the neural network parameters

____________________________
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Input: - Optimization problem with n variables

- Population size N

- Maximum number of function evaluations MaxFES
Output: | Fitness value pgbest of the globally best solution found

1 Set initial parameters: a, b, c,d, e, c1,c2,r,w, N, MaxFES

Set personal best pbest; = x;and personal worst pworst; = x;

Identify global best pgbest and global worst pgworst from the population

Update velocity v; using ExPSO velocity equation (Algorithm 1)

2 For each particle i in the population (i = 1to N):

3 Randomly initialize position x; within search bounds

4 Randomly initialize velocity v;

5 Evaluate fitness f(x;)

6

7 end For

8

9 While stopping condition not met (e.g., FES < MaxFES):
10 For each particlei=1to N:

11

12 Clip velocity: v; = min(max(v_i, v_min), v_max)
13 Update position: x; = x; + v;

14 Clip position: x; = min(max(x;, x_min), x_max)
15 end For

16 end while

17 For each particle i:

18 Evaluate fitness f(x;)

19 If f(x;) better than f(pbest;), then update pbest;= x;
20 If f(x;) worse than f(pworst;), then update pworst;= x;
21  endFor

22 Update pgbestand pgworstbased on the new population
23  Update dynamic parameter a r X a

24 Apply velocity damping using Algorithm 2

25 end while

Algorithm 1 ExPSO Algorithm.

This  damping mechanism  ensures  smoother
convergence by gradually reducing the exploration radius
while maintaining directional diversity. The optimization
loop continues until a stopping criterion is met, typically
based on the maximum number of function evaluations
MaxFES. At each iteration, the fitness of each particle
is evaluated, and the personal/global best and worst
records are updated accordingly.

To construct an effective model with optimal
parameters, specific steps are followed. First, data are
processed and split into training, validation, and test sets.
The training and validation sets are used to develop the
model. The test set evaluates the model’s performance
and generalization.

During the parameter selection phase, the user
employs the ExPSO package to find the most suitable
parameters. This package is built around a primary
Python file that includes several PyTorch classes, such
as ExPSO and Particle. These classes work together to
implement the ExPSO algorithm effectively. The ExPSO
class is initialized with several parameters, including

the objective function, dimensions, number of particles,
maximum iterations, bounds, and runs. Below, we
provide a detailed description of each parameter:

* Objective function (ObjFunction): The function that
the algorithm aims to optimize using a given set of
input parameters.

* Dimensions (D): Refers to the shape or size of the
input parameters in the objective function.

* The number of particles (nPop): The number of
particles used to explore the solution space. A higher
number of particles can improve solution quality, but
it also increases computational cost.

e Maximum iteration number (MaxIt): Sets the
maximum number of times the algorithm runs before
it stops. Set this to a reasonable number to balance
good solutions and to avoid long runtimes.

* Upper and lower bounds (ub, Ib): These are the limits
within which the algorithm searches for solutions for
each input parameter. Properly set bounds ensure
the algorithm searches within the appropriate range.
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Input:N// N is the population size,N; = N, = N3
//N;, N5, Nsare the number of particles in subpopulations

1 | While (the maximum number of iterations is not reached), do

2 Ifi < N1

3 (ropestiaree)
y=e lpbest;—x;l[+e

4 v; = wv; + ayRyec.bri(pbest; — x;) + cry( pgbest — x;)

ElseifN1< i < N1 + N2

Else

O 00N O U

end while

+ drz(pworst; — x;) + er,( pgworst — x;)
V; = Wv; + ayRyec+ bri(pbest; — x;) + cry( pgbest — x;)

V; = wv; + ayRyecC111(pbest; — x;) + cor( pgbest — x;)

Algorithm 2 ExPSO Subpopulations Algorithm.

Input: t, , k // t, is the exploration number of

iterations.

1 vmax = xmax

Umin=Xmin

vmax= kxmax

Umin= kxmin

(o) NN U2 BN S OV

7 end while

_ (1—W>
w=r 1+w

While (number of iterations > t,), do

Algorithm 3 Velocity Controller Algorithm.

* Number of runs (runs): Specifies how many times the
algorithm runs with the same parameters to ensure
robust and reliable results.

When the user invokes the optimize() method, the ExPSO
algorithm starts by creating multiple combinations
of parameters, which are randomly initialized. These
combinations are then used in multiple iterations of
the algorithm. During each iteration, the particles
are converted into parameter sets and the algorithm
is trained. Through iterative communication, the
particles collaborate to identify the optimal solution.
The objective is to discover a parameter combination
that results in the most effective model. The flowchart
of the optimization algorithm is detailed in [16]. Upon
termination, the ExPSO algorithm extracts and stores
the parameters of the best-performing model within
the instantiated ExPSO object. Various factors influence
the computation time of ExPSO, including the number
of particles, the number of iterations, and the maximum
allowed iterations.  Additionally, supplementary
constraints may impact the computation time

by causing the optimization process to stop if no
improvements are detected over a series of consecutive
iterations.

The ExPSO package is designed to optimize a range
of problems by treating them as a black box, making it
particularly suitable for parameter selection tasks. This
package supports a variable number of parameters and
accommodates multiple parameter types across various
algorithms. Tt is especially beneficial for researchers
seeking to investigate the impact of various selection
methods on the effectiveness of their models. The
package enables users to visualize multiple metrics,
providing insight into how different parameter settings
affect model performance.

* GlobalBestPosition: Represents the optimal or near-
optimal solution obtained by the ExPSO algorithm in
the search space.

* GlobalBestCost: Represents the optimal or near-
optimal value achieved by the ExPSO algorithm.

*  WorstSol: Refers to the highest value of the best
cost found during the optimization process. It helps
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evaluate the quality of the obtained solutions and
identify the worst performing solution.

* MEAN: Represents the average value of the best cost
found across multiple optimization runs.

* BestSol: Refers to the lowest value of the best cost
found during the optimization process.

» STD (Standard Deviation): Refers to the standard
deviation, which is often used to assess the diversity
or convergence of the obtained solutions. A lower
standard deviation indicates that the solutions are
more closely clustered and concentrated around the
optimal solution.

* AvgFES (Average Function Evaluations): Represents
the average number of function evaluations
performed during the optimization process. It
indicates the computational effort required to find
the optimal solution.

By leveraging the flexibility of PyTorch and its ability
to define new structures, users can customize the
optimization process and experiment with different
variations of the ExPSO algorithm.

IMPLEMENTATION

PyTorch was selected for this work due to its dynamic
computation graph (eager execution), which provides
more flexibility and transparency during model
development, debugging, and implementation of
custom optimization or attack strategies. This is
particularly advantageous for research-focused tasks
such as counterfactual generation, adversarial attacks,
and iterative model updates. Compared to TensorFlow
[19] and Keras [22], PyTorch offers more intuitive control
flow and better support for low-level operations, which
are essential when fine-tuning optimization processes or
integrating explainability components [20]. While (Just
After eXecution (JAX) [23] is also a strong candidate for
high-performance computing, its functional paradigm
and limited debugging support make PyTorch more
suitable for iterative and experimental work. While
JAX provides strong capabilities for high-performance
and accelerated computing through its functional
programming paradigm and XLA compilation, the limited
flexibility in debugging and dynamic execution makes
PyTorch a more practical and accessible framework
for iterative development and experimental research
workflows.

HYPERPARAMETERS

In our proposed approach, we adopted a carefully
tuned set of parameters to balance exploration,
exploitation, and diversity within the swarm. The
exponential weight parameter (a = 2) ensures
moderate sensitivity to fitness differences, allowing
meaningful selection pressure without premature

convergence. The cognitive and social acceleration
coefficients (b = ¢ = 2) are set to their empirically
optimal values, maintaining a stable trade-off
between individual learning and collective guidance.
To avoid stagnation in local optima, we introduce
worst-case coefficients (d = e = -1) that occasionally
push particles away from suboptimal regions. The
cognitive scaling factor (c1 = -1) promotes individual
diversity, while the social scaling factor (c2 = 2)
fosters cohesion within the swarm. We maintain a
relatively high inertia weight (w = 0.9) to encourage
broader exploration, and apply a damping factor (r
= 0.9) to stabilize the velocity updates. During the
exploration phase, 10 iterationsare executed with a
controlled velocity decay (k = 0.2) to gradually narrow
the search. Additionally, the swarm is partitioned into
three equally sized subpopulations (N1 =N2 =N3 =10)
to ensure parallel and diversified exploration across
multiple regions of the solution space.

QUALITY CONTROL

To ensure the reliability and correctness of the ExPSO
library, we developed a comprehensive unit testing suite
using the pytest framework. These unit tests validate the
core functionalities of the package, including particle
initialization, velocity and position updates, fitness
evaluations, convergence criteria, and integration with
external deep learning frameworks such as PyTorch and
TensorFlow. Table 2 summarizes the unit tests that verify
core functionalities of the ExPSO algorithm, all of which
have successfully passed, ensuring reliable initialization,
updates, evaluation, and integration.

EXAMPLE USAGES

We provide two examples designed to help users become
acquainted with the ExPSO package. These examples
gradually increase in complexity, allowing users to
gain familiarity with the package. The full code for the
experiments is available on our GitHub site.

Example 01: ExPSO with Rosenbrock function

In this example, we demonstrate the utilization of
the ExPSO package for a straightforward parameter
optimization task. Our objective is to find optimal
solutions for the Rosenbrock function [21] (Figure 2).
The code begins by importing necessary libraries (lines
1 and 2) and initializing inputs such as runs, Ib, ub,
D, nPop, and MaxIt (lines 3-8). We then define the
objective function specifically for the Rosenbrock
function and instantiate an ExPSOCIass (lines 9 and
12). The optimization process starts with a call to the
optimize() function (line 14), and the resulting best
parameters are captured in a variable presented on
line 16. Figure 3 illustrates the multiple metric outputs
obtained from executing the code.
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TEST NAME PURPOSE STATUS
test_initialize_particles() Verifies correct generation of initial positions and velocities Passed
test_velocity update() Ensures accurate computation of velocity updates per ExPSO equations Passed
test_position_update() Checks boundary handling and correct position updates Passed
test_fitness_evaluation() Confirms objective function evaluation returns valid and expected outputs ~ Passed
test_global_best_selection() Validates that global best particle is correctly identified and tracked Passed
test_integration() Tests compatibility with PyTorch models and parameter space setup Passed
test_termination_criteria() Checks early stopping and max iteration limits work as intended Passed
test_invalid_input_handling() ~ Ensures graceful handling of invalid configuration or input parameters Passed
test_initialize_particles() Verifies correct generation of initial positions and velocities Passed

Table 2 Unit Tests for ExPSO Library Functions.

Figure 2 Illustrative example of ExPSO with Rosenbrock function.

Figure 3 Output result of ExPSO after optimizing for the Rosenbrock function.

Example 02: ExPSO with MLP Model

In this example, we illustrate the application of ExPSO
for fine-tuning the parameters of a Multilayer Perceptron
(MLP) model. Figure 4 outlines the initial steps familiar
from the previous example: importing necessary
modules, initializing an ExPSO instance, and initiating
the optimization process. However, instead of employing
the Rosenbrock function, we define an objective function
tailored for the MLP model, detailed in Figure 5. The
objective function calculates the loss by invoking the MLP

method, as illustrated in Figure 6. This method utilizes
the “neurons” and “epochs” values obtained in each
iteration (lines 2 and 3) to train the model, as shown in
lines 7and 17.

ANALYSIS USING BENCHMARK DATA

To validate the effectiveness of ExPSO across diverse
scenarios, we selected arange of optimization algorithms
for comparison. For standard benchmark functions (both
unimodal and multi-modal), we included ExPSO, Phasor
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Figure & Illustrative example of ExPSO with MLP model.

Figure 5 MLP model objective function.

Figure 6 An illustrative example of train and evaluating the MLP model with ExPSO parameters.

Particle Swarm Optimization (PPSO) [15], Fitness-based
Multi-role PSO (FMPSO) [12], and eXpanded PSO (XPSO)
[13] to ensure fair assessment across different landscape
complexities, highlighting the balance between
exploration and exploitation achieved by our proposed
method. For real-world engineering problems, algorithms
like PPSO, FMPSO, MSPSO, XPSO, TAPSO, EO, DSOS, HHO,
IRGA, EBO with CMAR, and IMODE were chosen due to
their proven performance in handling constrained, high-
dimensional, and non-convex tasks. We conducted tests
on 12 benchmark functions and compared its results
with three state-of-the-art algorithms. These benchmark
functions, extensively described in [16], cover a variety of
problem types and dimensions, specifically 12 scalable

problems with dimension D = 30. The chosen functions
represent different search landscape characteristics;
some are unimodal with a single global minimum, which
tests the algorithm’s exploitation ability, while others
are multimodal with numerous local minima, testing
the algorithm’s exploration capabilities. The benchmark
functions include:

¢ Unimodal benchmark functions (f, to f)—namely,
the Sphere function (f,) [24], Schwefel’s functions
v2.22 (f,), v1.2 (f,), and v2.21 (f,) [25], Rosenbrock
function (f,) [21], and Step function (f,) [26],
respectively—are used to evaluate exploitation
capability and algorithm convergence performance.
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* Multimodal benchmark functions (f, to f,,)—namely,
Schwefel’s function (f,) [25], Rastrigin’s function (f,)
[25], Ackley’s function (f,) [27], Griewank function
(f,,) [28], Generalized Penalized function 1 (f,,) [29],
and Generalized Penalized function 2 (f,,) [30],
respectively—are used to evaluate exploration
capability and the ability to handle multiple local
optima.

Tables 3 and 4 present the comparison results, detailing
averagevalues (Avg.) and standard deviations (S.D.) across
each experimental setup. For unimodal functions, Table 3
shows that all algorithms successfully identify the global
optimum in most cases. ExPSO consistently achieves
the global minimum across all 30 runs for functions f,
to f,, with average values of 0.00e+00, indicating not
only exact convergence but also high numerical stability.
Standard deviations for ExPSO in these cases are either
exactly zero or on the order of 1e—10, which s significantly
lower than competing methods, where deviations often
range from 1e—4 to 1e+01. This highlights ExPSQO’s strong
exploitation capabilities, attributed to its exponential PSO
strategy.

For multimodal functions, Table 4 reveals that ExPSO
consistently identifies the global minimum for all
functions tested. In contrast, PPSO, XPSO, and FMPSO

occasionally fail to achieve the global minimum for
specific functions (i.e., PPSO for f_, XPSO for f, ;, and FMPSO
for f, and f ;). The repeated achievement of 0.00e+00
values across multiple runs, along with consistently lower
standard deviations compared to other methods, further
underscores ExPSQO’s robust and repeatable exploration

capabilities.

ANALYSIS USING ENGINEERING DATA

In this section, ExPSO is tested on four well-known
engineering design problems: Pressure Vessel Design
(PVD) [31], Compression Spring Design (CSD) [32], Welded
Beam Design (WBD) [33], and Speed Reducer Design
(SRD) [34]. These problems have different constraints
that should not be violated by the optimal solution(s)
obtained, and thus, a constraint handling method must
be utilized.

Tables 5-8 present comprehensive performance
comparisons of twelve optimization algorithms across
four classic engineering design problems. The results
demonstrate varyingalgorithmic effectiveness depending
on the problem characteristics. For the Pressure Vessel
Design (PVD) problem, the results indicate that ExPSO, EO,
and DSOS achieve nearly identical minimum cost values.
In the Coil Spring Design (CSD) task, most algorithms,
except XPSO, converge to comparable solutions, while

METHOD  RESULT f, f, f, f, f, f,

ExPSO Avg. 0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
s.D. 0.00e+00  0.00e+00  0.00e+00  0.00e+00 3.17e+09  0.00e+00

XPSO Avg. 2.64e-05  0.00e+00  8.33e+00 1.81e-01  9.25e+00  0.00e+00
S.D. 124e-04  5.65e-10  3.31e-04  2.05e-01  9.16e+00  0.00e+00

PPSO Avg. 0.00e+00  0.00e+00  0.00e+00  7.99e-05  0.00e+00  0.00e+00
S.D. 554e-10  1.70e-09  1.25e-10  1.52e-04  1.18e-09  0.00e+00

FMPSO Avg. 0.00e+00  0.00e+00  0.00e+00  0.00e+00  7.97e-01  0.00e+00
S.D. 243e-09  630e-10  455e-10  1.50e-10  1.62e+00  0.00e+00

Table 3 Comparison of optimization algorithms on unimodal benchmark functions.

METHOD  RESULT f, f, f, fo f. f,
ExPSO Avg.  -125e+04  0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
s.D. 1.91e-01  0.00e+00  0.00e+00  0.00e+00 2.73e-09  3.21e-09
XPSO Avg. -1.08e+04 3.98e+00  0.00e+00  3.53e-02  3.44e-08  0.00e+00
S.D. 319e+02  6.12e+02  6.12e-10  341e-02  1.36e-07  7.51e-10
PPSO Avg. -1.19e+04  0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
S.D. 7.26e+02  196e-10  2.80e-10  2.24e-10  3.07e-09  1.27e-10
FMPSO  Avg. -1.10e+04  2.28e+01  0.00e+00  534e-02  1.38e-02  2.20e-03
S.D. 4.22e+02  1.64e+01  3.66e-10  4.58e-02  592e-02  4.47e-03

Table 4 Comparison of optimization algorithms on multimodal benchmark functions.
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F EXPSO PPSO FMPSO MSPSO  XPSO TAPSO EO DSOS HHO IRGA EBCMAR IMODE
f(x) 6059 6216 6771 6090 44232 6424 6059 6059 6064 6118 6123 6156
Best 6059 6216 6771 6090 44232 6424 6059 6059 6064 6118 6123 6156
Worst 7332 13846 27782 7461 99145 6424 7544 6820 7544 7544 7473 20218
Mean 6197 6473 17380 6547 70587 6424 6641 6095 6684 6863 6979 9355
S.D. 350 1852 10507 791 27522  0.000 566 148 425 372 399 3079

Table 5 Comparison of optimum results and statistical results for the PVD problem. Values represent the objective function f(x), with
Best, Worst, Mean, and Standard Deviation (S.D.) across 30 independent runs. Bold values indicate the best performance for each metric.

ExPSO, DSOS, HHO, EBOwithCMAR, and IMODE attain the
same optimal result. For the Welded Beam Design (WBD)
problem, ExPSO delivers a solution similar to EO, DSOS,
EBOwithCMAR, and IMODE, surpassing the remaining
algorithms in performance. Statistical analysis further
shows that the mean solution produced by ExPSO is very
close to its best outcome, confirming its consistency and
robustness across multiple runs. In the Speed Reducer
Design (SRD) problem, comparison of the optimal and
statistical results reveals that EBOwithCMAR attains
the best overall cost (2639.499), whereas most other
algorithms yield 2994.424. In contrast, FMPSO, XPSO, and
HHO record slightly higher costs of 3048.377, 3060.097,
and 2997.639, respectively.

CLASSIFICATION ANALYSIS

In Figure 7, we present a detailed comparison of the
performance achieved using the proposed ExPSO
algorithm against four baseline optimizers across five
different model architectures: CNN [35], LSTM [36],
XLNet [37], MLP [38], and VGGNet [39]. The experiments
were conducted on benchmark classification datasets,
including MNIST [40] for image-based models (CNN and
VGGNet), and IMDB [41] for text-based models (LSTM and
XLNet), while the UCI Breast Cancer dataset was used for
the MLP model. Each dataset includes clearly defined
class labels—for example, digit categories (0-9) in MNIST,
sentiment polarity (positive/negative) in IMDB, news topic
categories in AG News, and benign vs. malignant in the
breast cancer dataset.

Across all tested models, ExPSO consistently achieves
the highest classification accuracy, demonstrating
strong robustness and generalization across both
deep and traditional neural architectures. On the CNN
model, ExPSO reaches an accuracy of 97%, significantly
outperforming PSO (91.4%), QPSO (92%), and FastPSO
(90%), suggesting superior early-stage exploration
capabilities. Similarly, for the LSTM model, ExPSO again
achieves 97%, surpassing PSO (92.11%) and QPSO
(94%), indicating that its fine-grained control of position
updates is particularly effective in sequence-based
learning tasks. In more complex transformer-based
architectures, such as XLNet, ExPSO outperforms QPSO
(81%) and FastPSO (82%), notably by 6 percentage

points, which underscores its efficiency in navigating
high-dimensional attention-based search spaces.
Even in simpler feedforward networks, such as MLP,
where optimizer performance tends to converge,
ExPSO still maintains a slight edge at 89%, compared
to QPSO at 88% and FST-PSO at 87%, reflecting its
stable optimization behavior. Finally, on VGGNet, a
deep convolutional architecture, ExPSO attains 92%,
considerably outperforming PSO (85.19%) and FastPSO
(87%), further demonstrating its ability to escape
suboptimal minima in deep layered structures. These
consistent improvements across a variety of models
validate ExPSO’s design as a balanced optimizer capable
of adapting to both the structural complexity and
training dynamics of modern learning systems.

The performance results reveal several consistent
trends that underscore the effectiveness of ExPSO as
an optimization framework. Notably, performance gains
are more pronounced in complex architectures such
as CNN, LSTM, and XLNet, where ExPSO demonstrates
its capacity to scale with increasing model depth and
parameter complexity. This suggests that ExPSO is
particularly well-suited for high-dimensional and non-
convex search spaces that often challenge conventional
PSO variants. Unlike standard PSO and FastPSO, which
exhibit fluctuating performance across tasks, ExPSO
displays stable convergence behavior, maintaining a
narrow and consistently high accuracy range of 87%
to 97%.

LIMITATIONS

While the results demonstrate that ExPSO performs
competitively across a range of benchmark functions,
engineering problems, and classification models, several
limitations remain that warrant further investigation. First,
although ExPSO achieves high accuracy and repeatability
in both unimodal and multimodal optimization tasks, its
current performance evaluation is limited to standard
benchmark functions (f,-f,,) and four engineering design
scenarios. A broader evaluation on real-world, noisy, and
dynamic optimization problems—such as scheduling,
resource allocation, and neural architecture search—
would provide a more comprehensive understanding
of its robustness under diverse conditions. Second,
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Figure 7 Accuracy Comparison of ExPSO Library with FST-PSO, Pyswarms, QPSO, and FastPSO Libraries for Deep and Machine Learning

Models.

the exponential search component, which enhances
convergence, introduces moderate computational
overhead. While this is mitigated through parallelism
and adaptive control, the exact trade-off between added
complexity and optimization gain remains to be formally
quantified. In future work, we plan to benchmark
computational time and memory usage across scalable
high-dimensional problems to further validate ExPSO’s
efficiency in  time-constrained or resource-limited
environments. Third, while ExPSO supports integration
with PyTorch and TensorFlow, current deep learning tests
focus primarily on classification tasks. Future iterations
will explore regression, generative modeling, and
reinforcement learning settings to better understand
ExPSO’s applicability across varied ML pipelines. Finally,
the optimizer’'s parameter sensitivity (particularly with
respect to subpopulation size, velocity damping factor,
and exponential decay rate—deserves deeper empirical
tuning). Automated meta-optimization or self-adaptive
control mechanisms could enhance usability by reducing
manual tuning and improving generalizationacross tasks.

(2) AVAILABILITY

OPERATING SYSTEM
This package can be run on any operating system where
Python can be run (GNU/Linux, Mac OSX, Windows).

PROGRAMMING LANGUAGE
python 3.6.1+

ADDITIONAL SYSTEM REQUIREMENTS
None.

DEPENDENCIES
pytorch, numpy, math, tensorflow, keras, scikit-learn

SOFTWARE LOCATION
Archive
Name: Codeocean
Persistent identifier: https://codeocean.com/capsu
le/5975162/tree/vl
Licence: GNU General Public License (GPL)
Publisher: insaf kraidia
Version published: 1.0
Date published: 12/12/23

Code repository
Name: Github
Identifier: https://github.com/insafkraidia/ExPSO
Licence: GNU General Public License (GPL)
Date published: 13/06/23

LANGUAGE
English

(3) REUSE POTENTIAL

The ExPSO package stands out by potentially supporting
researchers across diverse fields with comparable
methodologies. The GitHub repository offers a range of
examples to help users become proficient with ExPSO.
Starting from fundamental concepts and progressing to
more advanced applications, these examples facilitate
gradual familiarity with the package. Users are invited to
provide feedback via the GitHub issue tracker or directly
to the authors via email.


https://codeocean.com/capsule/5975162/tree/v1
https://codeocean.com/capsule/5975162/tree/v1
https://github.com/insafkraidia/ExPSO
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