
Dynamic Cognitive-Social Particle Swarm 

Optimization 
 

Khelil Kassoul1,3 
1Geneva School of Economics and 

Management, GSEM 

University of Geneva 

Geneva, Switzerland 

Khelil.Kassoul@etu.unige.ch 

Samir Brahim Belhaouari 
2College of Science and Engineering 

Division of Informatic & Computing Technology 

Hamad Bin Khalifa University  

Doha, Qatar 

sbelhaouari@hbku.edu.qa 

Naoufel Cheikhrouhou 
3Geneva School of Business Administration 

University of Applied Sciences Western 

Switzerland (HES-SO), 

Geneva, Switzerland 

naoufel.cheikhrouhou@hesge.ch

 

Abstract—Particle Swarm Optimization (PSO) is a heuristic 

optimization algorithm based on the modeling of the behavior of 

fishes and birds flock. This paper proposes a better version of 

PSO, named Dynamic Cognitive-Social PSO “DCS-PSO”, for 

global minima search by introducing optimal and dynamic 

cognitive and social scaling parameters without taking into 

consideration the inertia term. Furthermore, the velocity of each 

particle is controlled systematically at each iteration to avoid 

local minimum traps and to converge quickly and reliably 

towards the global minimum. The proposed algorithm is more 

suitable for high dimensional optimization problems and it has 

gotten over the limitations of classical Particle Swarm 

Optimization. Several experiments have been carried out, using 

the proposed DCS-PSO, to optimize thirteen benchmark 

functions and an important improvement has been observed, not 

only in terms of reaching the best global solutions but also in 

terms of convergence speed, compared to the existing benchmark 

approaches. 

Keywords—dynamic parameters, particle swarm optimization, 

velocity, convergence 

I. INTRODUCTION 

The Particle Swarm Optimization (PSO) is an intelligent 
algorithm first introduced by [1]. PSO is inspired by the social 
collective behavior of fishes (or birds) flocking.  Imagine the 
following scheme: a group of fishes searches randomly for 
food in an area in which there is only one piece. The fishes 
know that food is far away on every move but Not all know 
where food is. The effective strategy for finding food is 
certainly to follow the fish nearest to the food. 

PSO is a heuristic global optimization method (also an 
algorithm), which learned from this scheme. Each potential 
solution in the search space is a “fish” called “particle”. Each 
particle learns from its own experience and from other particles 
during the repeated flights. The learning from own experience 
may be denoted as cognitive learning. In this case, the particle 
memories the personal best position i.e. the best solution 
visited so far by itself. The learning from others may be 
denoted as social learning and the particle memories in this 
case the best solution visited by any particle of the swarm 
which called as global best position [2]. 

The PSO is an iterative algorithm, initializing with a set of 
random solutions, called a swarm of particles, and then 
searches for optima by updating iterations. Each particle could 
be a potential solution and it has several parameters such as the 

velocity, the best position visited by the particle so far, and the 
current position [3]. In a d-dimensional search space, the 
position and the velocity of each particle is represented by d-
dimensional vectors, which guide the moving of the particles 
according to the individual and the collective knowledge. The 
velocity and position of the i

th
 particle at iteration t are 

represented as follows: 

  𝑣𝑖(𝑡) = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑)         (1) 

          𝑥𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑)        (2) 

In the original version of PSO, the velocity and position, at 
every iteration t, are updated as follows: 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑟1𝑐1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡))+ 𝑟2𝑐2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))

            (3) 

                 𝑥𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) + 𝑥𝑖(𝑡)        (4) 

where, 𝑣𝑖(𝑡)  is the velocity of 𝑖𝑡ℎ  particle at iteration 𝑡 , 

𝑝𝑖(𝑡)  refers to the personal best position of the 𝑖𝑡ℎ  particle, 
𝑝𝑔(𝑡) refers to the global best position of the entire swarm, 𝑟1 

and r2 are two random values in the interval [0,1] and the two 
acceleration constants  𝑐1 𝑎𝑛𝑑 𝑐2  are known respectively as 
cognitive and social scaling parameters. They are generally 
fixed as 2.0. However, [4] in their study, 𝑐1 𝑎𝑛𝑑 𝑐2  are 
function in terms of iteration t as follows: 

  𝑐1 = 𝑐2 = 2 +
𝑡𝑚𝑎𝑥−𝑡

5𝑡𝑚𝑎𝑥
,         (5) 

where tmax represents the maximum number of iterations. 

Since the introduction of the standard PSO, several 
modifications are introduced and other versions have been 
proposed. [5, 6], because the basic PSO [1] has its limitations 
(e.g. in the field of plasmonics [7]). The idea of regulating of 
the velocity has been presented in [8]. The authors study the 
effects of velocity limitations and use different maximum 
values to controlling the velocity.  

To regulate the velocity, most common methods consist in 
multiplying by factors when updating the value of velocity. 

The key input in this research is the integration of dynamic 
factors to regulate the velocity at each iteration, thus for two 
reasons: One is to avoid local minimum traps and to converge 
quickly and reliably towards the global minimum whereas the 
other one is to achieve a balance between exploitation and 
exploration. The proposed algorithm achieves better results 
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than the standard PSO algorithm and it is competitive when 
compared with other benchmark methods. 

II. PARTICLE SWARM OPTIMIZATION VERSIONS 

The success of an optimization algorithm depends generally 
on bringing about a compromise between global search and 
local search throughout the whole search space. Considering of 
this, an inertia weight, w, of a particle is brought into the 
original equation and the velocity is updated as follow: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))

                             (6) 

According to [9], most of the common PSO algorithms 
developed until now include the inertia weight coefficient, and 
it is commonly mentioned as the Standard PSO (SPSO). Table 
I summaries several existing inertia weight strategies reported 
in the literature. 

Reference [20] proposes the introduction of a constriction 
factor 𝜒 to insure the convergence of the PSO. In this case, the 
velocity is updated according to the following equation: 

𝑣𝑖(𝑡 + 1) = 𝜒[𝑣𝑖(𝑡) + 𝜑1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝜑2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))]

                    (7) 

where 𝜒 is given by: 

𝜒 =
2

|2−𝜑−√𝜑2−4𝜑|
  (8) 

and 𝜑 = 𝜑1 + 𝜑2  , 𝜑 > 4. 

Thus, the equation 7 can be written as: 

𝑣𝑖(𝑡 + 1) = 𝜒𝑣𝑖(𝑡) + 𝜒𝜑1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝜒𝜑2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))]

                       (9) 

We can note that equation 9 becomes analogous to equation 
6 with: 

 𝑤 = 𝜒, 𝑐1 = 𝜒𝜑1 𝑎𝑛𝑑 𝑐2 = 𝜒𝜑2    (10) 

A comparison between the constriction factor and the 
inertia weight is proposed in the study of [12]. It has been 
concluded that the use of the constriction factor gives better 
quality solutions. When this factor is used, generally a value of 
4.1 for 𝜑  is taken, and thus 𝜒 ≈ 0.7298 , with: 𝜑1 = 𝜑2 =
2.05 𝑎𝑛𝑑 𝑐1 = 𝑐2 = 1.49445. Note that 𝜒 can be taken as a 
function. However, [21] proposed a constriction factor based 
on the cosine defined in the following equation: 

𝜒 =
cos(2

𝜋

𝑡𝑚𝑎𝑥
(𝑡−𝑡𝑚𝑎𝑥))+2.428571

4
   (11) 

where tmax is the maximum iteration number. 

TABLE I.  DIFFERENT INERTIA WEIGHT STRATEGIES 

N. Inertia weight formula Related description Reference 

1 𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Constant inertia weight  [10] 

2 𝑤 = 0.5 +
𝑟𝑛𝑑()

2
  Random w [11] 

3 𝑤 = 𝑤𝑚𝑎𝑥 −  
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
∙ 𝑡                   wmax, wmin: intial and final values of w Linear decreasing inertia weight [12] 

4 𝑤 = 1.1 +
𝑝𝑔

𝐴𝑣𝑔(𝑝𝑖)
                                   tmax: maximum number of iterations   Adaptive global-local best inertia weight [13] 

5 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
)

𝑛

           p: global best position   

     pi: personal best position   

Linear time varying inertia weight [14] 

6 𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∙ λ(𝑡−1) 

λ =0.95 

Simulated annealing inertia weight [15] 

7 𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∙
𝑟𝑎𝑛𝑘𝑖

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
         Ranki: position of the i

th
 particle  Adaptive particle rank [16] 

8 𝑤 = 𝑤𝑚𝑖𝑛 ∙  𝑢𝑖𝑡𝑒𝑟𝑡                          u: constant value in the range [1.0001, 1.005] Nonlinear time varying inertia weight [17] 

9 𝑤 = 𝑤𝑚𝑎𝑥 ∙ 𝑧 + (𝑤𝑚𝑖𝑛 − 𝑤𝑚𝑎𝑥)
𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥−𝑡
     Z: chaotic term. Chaotic inertia weight [18] 

10 
𝑤(𝑡 + 1) = 𝑤𝑖(𝑡) − (𝑤𝑖(𝑡) − 0.4) ∙ 𝑒𝑥𝑝 (− |(𝑝𝑔 − 𝑝𝑖) ∙

𝑡

𝑡𝑚𝑎𝑥

|) 
Adaptive nonlinear inertia weight [19] 

 

III. THE PROPOSED METHOD 

The proposed method in this paper, named Dynamic 
Cognitive-Social PSO “DCS-PSO”, is characterized by the 
non-use of the inertia term and thus focusing on the social and 
cognitive parts of the PSO along with controlling the speed 
values. The idea of this strategy is based on the fact that the 
particles in the swarm should follow those which have shown 
an improvement in their respective position in the local search 
space. So, a leaping strategy is used in order to escape 
converging prematurely towards a local minimum. A new 
cognitive and social functions 𝑐1(𝑡) and 𝑐2(𝑡) are introduced. 
The function 𝑐1(𝑡) is incorporated using a logarithm function 
defined in equation (12). The position of each particle is 

limited by the range of [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥], where 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are 
respectively the lower and the upper bounds of variables. 

𝑐1(𝑡) = 𝑎(𝑡)𝛼(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛) ∙ 𝑙𝑜𝑔(‖𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)‖ + 𝜖)     (12) 

where, 𝜖  is a very small positive value, 𝑎(𝑡)  is a dynamic 
cognitive parameter and 𝛼(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  is a dynamic 
regulator exponent defined as follow: 

𝛼(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) = {
5 ,          |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛| ≤ 10

1 ,          |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛| > 10
    (13) 

Four initial values of  𝑎(0) are tested: (𝜒𝜋)
1

4 , cos(√𝜒𝜋), 
sin(√𝜒𝜋) and 𝑒, while the social function is given as 𝑐2(𝑡) =
(𝜒𝜋)𝛼. 
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Every time, when a particle is stuck at a local minimum, the 
velocity is near to zero, the particle could make a lead using the 
logarithm function and thus skipping a possible local optimum. 
To allow larger leaps at the start of iterations to explore the 
whole search space and small leaps for a refinement in specific 
solution-space regions, the idea of linear decreasing cognitive 
parameter, with a dynamic damping coefficient 𝑑(𝑡)  and a 
damping coefficient k, is used as follow: 

  𝑎(t+1) = 𝑑(𝑡) ∙ 𝑎(𝑡)     (14) 

  𝑑(𝑡 + 1) = 𝑘 ∙  𝑑(𝑡)      (15) 

where the initial values of 𝑑(0) and k are taken respectively 
0.9995 and 0.99999, while 𝑎(0)  will take the four different 
values given above. 

The range of the velocity [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥] is selected to be: 

{
𝑣𝑚𝑎𝑥 = 0.9⌈𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛⌉

𝑣𝑚𝑖𝑛 = −0.1⌈(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)⌉  
   (16) 

So, the velocity equation of the proposed DCS-PSO will be 
updated as: 

 𝑣𝑖(𝑡 + 1) = {

𝑣𝑚𝑎𝑥       𝑖𝑓 ℎ(𝑡) >  𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛      𝑖𝑓 ℎ(𝑡) <  𝑣𝑚𝑖𝑛

ℎ(𝑡)               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (17) 

where  

ℎ(𝑡) = 𝑟1𝑐1(𝑡)(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑟2𝑐2(𝑡) (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡)) 

The strategy of the proposed DCS-PSO is described in 
algorithm 1.  

 

ALGORITHM 1. PSEUDOCODE OF DCS-PSO ALGORITHM  

1. Initialization 

          Step 1:    Set the initial parameters  
           Step 2:    Initialize randomly the velocity and the position of the   

particles 

   Step 3:     Set the actual position of particles equal to the first 
best 

             position values 

Step 4:    Evaluate the fitness values of particles and determine 
the global best position. 

    

2. Update of velocity and position of particles           
 Step 5:     Update the velocity of particles by equation (16) 

 Step 6:     Apply velocity limits 

 Step 7:     Update the position of particles by equation (4) 
 Step 8:     Apply position limits 

 

3. Update of personal and global best positions 

 Step 9:      Update best and global positions 

 Step 10:    Update dynamic parameter and coefficients 
 

4. Convergence procedure 

 Step 11:    Repeat step 5 to 11 until convergence or until 
reacting the maximum number of iterations. 

 

IV. RESULTS 

A. Comparison of DCS-PSO with PSO variants 

In this section, DCS-PSO is compared with existing 
variants of PSO [22,23] on 8 numerical functions taken from 
the report CEC2005 [24]. Table II gives a detailed description 
of the 8 benchmark functions including the search spaces and 
the global minimums. The dimension of all those functions are 
fixed to 30. The swarm population size, the maximum number 
of iterations, and the independent runs are respectively chosen 
as 30, 10000 and 20. The PSO algorithm will stop when the 
maximum number of iterations is reached. For the comparison 
to be judicious, we consider, like in the study of [22], that 
results below 10

-30
 are assumed to be 0. 

The data presented in Table III, with the exception of the 
DCS-PSO algorithm, are taken directly from the literature [22]. 
The comparison is based on mean fitness values, where, it can 
be seen that DCS-PSO has a high-quality solution in the search 
space compared to other PSO variants. The results in terms of 
precision of the solution are clearly better. It can be noted that 
the results for the four different initial values of a(t) tested are 
almost close. However, the use of a(0) = e remains very 
interesting and gives the best result. 

B. Comparison of DCS-PSO with other optimization 

algorithms 

To test the performance of the proposed method, other 
seven common benchmark functions are tested [25]. Table II 
summaries the description of these functions. From Table IV, it 
can be observed that the proposed algorithm has performed 
significantly better over the standard PSO for all functions f9- f15. 

For functions f9 et f14, the results are comparable with these of 
DE [28] and P-PSO [27]. The result obtained for f12 are better 
over P-PSO [27] and w-PSO [27].  The results for f10, f11, f13 and 
f15 were compared only with the standard PSO due to the lack 
of results in the literature. 

The results given in Table IV demonstrates that the DCS-
PSO algorithm has achieved better results and are usually very 
close to the global minimums of the functions tested.  This is 
certainly due, on the one hand, to the strategy of leaping which 
allow to not falling into the local minima (see Fig. 1). Indeed, 
if a particle found stuck i.e. its personal best position and its 
current position have the same values; what does mean that its 
velocity is close to zero. In this case, the logarithmic function 
allows the particle to do a jumping (take a big value) and thus 
escape converging towards a local minimum. Note that 
equation (17) ensures that the value of velocity always remains 
admissible. On the other hand, to the advantage of the 
cognitive and damping parameters to achieve on a compromise 
between the capacity of local and global search by improving 
the power of PSO to overcome of the local extremums with 
fast convergence speed near to the global value. To verify the 
fast convergence, DCS-PSO is compared with the standard 
PSO (Fig. 2). From this figure, we can note a great advantage 
of DCS-PSO in offering a faster convergence and we can 
observe that few iterations are needed to reach best solutions, 
regardless the dimension [29]. 
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TABLE II.  DIFFERENT BENCHMARK FUNCTIONS USED [24, 25] 

Name of 

function 
Equation Range Space 𝒇(𝒙∗) Features 

Sphere 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1   [−100,100] 0 Multimodal, scalable, separable, differentiable  

Rosenbrock 
𝑓2(𝑥) = ∑ (𝑏(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 𝑎)2), 𝑏 = 100,𝑛
𝑖=1

𝑎 = 1  
[−2.048,2.048] 0 Unimodal, scalable, non-separable, differentiable  

Schwefel 𝑓3(𝑥) = 418.9829 ∙ 𝑛 − ∑ 𝑥𝑖𝑠𝑖𝑛(√𝑥𝑖)
𝑁
𝑖=1   [−500,500] 0 Unimodal, scalable, partially-separable, differentiable 

Weierstrass 

 

𝑓4(𝑥) = ∑ (∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]
𝑘𝑚𝑎𝑥
𝑘=0 ) −𝑛

𝑖=1

𝑛 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘0.5)]𝑘𝑚𝑎𝑥
𝑘=0   

𝑎 = 0.5 , 𝑏 = 3 , 𝑘𝑚𝑎𝑥 = 20 

[−0.5,0.5] 0 Multimodal, scalable, separable, differentiable 

Shifted Schwefel 
1.2 

𝑓5(𝑥) = ∑ (∑ 𝑧𝑗
𝑖
𝑗=1 )

2
− 450𝑛

𝑖=1   [−100,100] -450 Shifted, unimodal, scalable, non-separable  

Shifted Rastrigin 𝑓6(𝑥) = ∑ (𝑧𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) − 330𝑛

𝑖=1   [−5,5] -330 Shifted, multimodal, scalable, separable 

 

Shifted Rotated 

Rastrigin 

 

𝑓7(𝑥) = ∑ (𝑧𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) − 330𝑛

𝑖=1     

   

[−5,5] 
 

-330 

 

Shifted, rotated, multimodal, scalable, non-separable  

 

Shifted Rotated 

Weierstrass 
 

𝑓8(𝑥) = ∑ (∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]
𝑘𝑚𝑎𝑥
𝑘=0 ) −𝑛

𝑖=1

𝑛 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘0.5)]𝑘𝑚𝑎𝑥
𝑘=0    

𝑎 = 0.5 , 𝑏 = 3 , 𝑘𝑚𝑎𝑥 = 20 

[−0.5,0.5] 0 Shifted, rotated, multimodal, scalable, non-separable 

Ackley  

𝑓9(𝑥) =

−20𝑒𝑥𝑝 (−0.2√
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 ) − 𝑒𝑥𝑝 (

1

𝑁
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖

𝑁
𝑖=1 ) +

20 + 𝑒  

[−32,32] 0 Multimodal, non-convex, differentiable 

 

Schwefel 2.20  
𝑓10(𝑥) = ∑ |𝑥𝑖|

𝑛
𝑖=1   [−100,100] 0 Multimodal, non-convex, differentiable 

 

Periodic 𝑓11(𝑥) = 1 + ∑ sin(𝑥)2 − 0.1𝑒∑ 𝑥𝑖
2𝑛

𝑖=1𝑛
𝑖=1   

 
[−10,10] 

 

0 
Multimodal, non-separable, differentiable, non-convex 

SumSquare  
𝑓12(𝑥) = ∑ 𝑖𝑥𝑖

2𝑛
𝑖=1   

  
[−10,10] 0  Unimodal, convex 

Alpine  𝑓13(𝑥) = ∑ |𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|
𝑛
𝑖=1   [−10,10] 0 

 Multimodal, non-convex, differentiable, non-
separable, 

Griewank 𝑓14(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1  
 

[−600,600] 
 

0 
Unimodal, non-convex 

Exponential 

 

𝑓15(𝑥) = −𝑒𝑥𝑝(−0.5 ∑ 𝑥𝑖
2𝑛

𝑖=1 )   
  

[−1,1] -1  Unimodal, convex, differentiable, non-separable 

𝑧 = 𝑥 − 𝑜 for 𝑓5 and 𝑓6 and 𝑧 = (𝑥 − 𝑜) ∙ 𝑀 for 𝑓7 and 𝑓8. 𝑜 = (𝑜1, 𝑜2, … , 𝑜𝑛) is the (shifted) gloabal optimum and 𝑀 is the orthogonal square matrix. 

TABLE III.  DCS-PSO PERFORMANCE COMPARISON WITH THE 9 PSO VARIANTS 

Function ScPSO CLPSO UPSO SG-PSO SP-PSO 
Local 

PSO-cf 

Global 

PSO-cf 

Local 

PSO-w 

Global 

PSO-w 

Proposed method: DCS-PSO (a) 

𝒂 = (𝝌𝝅)
𝟏
𝟒 𝒂 = 𝐜𝐨𝐬(√𝝌𝝅) 𝒂 = 𝒔𝒊𝒏(√𝝌𝝅) 𝒂 = 𝒆 

𝑓1 0.00e+00 0.00e+00 9.07e+03 0.00e+00 1.48e−06 1.34e+04 1.00e+03     1.79e+02 1.00e+03     0.00e+00 0.00e+00 0.00e+00 0.00e+00 

𝑓2 3.10e+01 4.81e+01 1.03e+03 2.08e+02 2.20e+01 1.72e+03 1.07e+02 1.27e+02 1.07e+02 0.00e+00 8.11e+01 3.23e+00 0.00e+00 

𝑓3 2.21e+03 5.46e+03 7.98e+03 4.20e+03 4.03e+03 7.36e+03 4.46e+03 6.41e+03 4.46e+03 3.81e-04 4.73e+03 3.81e-04 3.81e-04 

𝑓4 3.30e−01 2.42e−01 2.64e+01 1.60e+00 0.00e+00 2.70e+01 1.83e+00 4.37e+00 1.83e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 

𝑓5 3.97e+04 5.49e+06 7.85e+06 5.70e+06 1.73e+05 1.01e+07 6.00e+06 5.89e+06 6.00e+06 1.29e+05 2.29e+05 1.65e+05 1.60 e+04 

𝑓6 3.75e+01 2.16e+02 2.48e+02 1.57e+02 1.29e+02 4.01e+02 1.38e+02 2.93e+02 1.38e+02 5.21e+00 7.04e+00 5.52e+00 4.63e+00 

𝑓7 1.74e+02 1.70e+02 3.90e+02 2.31e+02 1.72e+02 5.72e+02 2.28e+02 3.83e+02 2.28e+02 -3.07e+01 -2.86e+01 -3.78e+01 -5.25e+01 

𝑓8 2.73e+01 3.27e+01 3.98e+01 2.77e+01 2.89e+01 3.65e+01 2.99e+01 3.37e+01 2.99e+01 4.01e+01 4.00e+01 3.94e+01 3.26e+01 

TABLE IV.  DCS-PSO PERFORMANCE EVALUATION 

Function PSO 
GA  

[26] 
BitABC  

[26] 
P-PSO [27] 

w-PSO  

[27] 

DE  

[28] 

FEP  

[28] 

Proposed method: DCS-PSO (a) 

𝒂 = (𝝌𝝅)
𝟏
𝟒 𝒂 = 𝐜𝐨𝐬(√𝝌𝝅) 𝒂 = 𝒔𝒊𝒏(√𝝌𝝅) 𝒂 = 𝒆 

𝑓9 1.63e+01 1.22e-02 1.22e-04 4.22e-15 1.05e-06 9.70e-08 1.80e-02 4.99e-14 7.08e-01 5.00e-14 8.88e-16 

𝑓10 4.58e+02 N.A. N.A. N.A. N.A. N.A. N.A. 3.82e-13 4.99e+00 3.26e-13 0.00e+00 
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𝑓11 1.75e+00 N.A. N.A. N.A. N.A. N.A. N.A. 0.90e+00 0.90e+00 0.90e+00 0.90e+00 

𝑓12 1.87e+03 N.A. N.A. 7.12e+01 1.59e-12 N.A. N.A. 0.00e+00 5.00e+00 0.00e+00 0.00e+00 

𝑓13 1.44e+01 N.A. N.A. N.A. N.A. N.A. N.A. 9.63e-11 7.01e-07 2.86e-11 4.27e-02 

𝑓14 1.37e+02 7.39e-02 1.45e-05 7.02e-02 6.84e-02 0.00e+00 1.60e-02 9.65e+00 2.32e+01 1.12e+01 0.00e+00 

𝑓15 -4.60e-01 N.A. N.A. N.A. N.A. N.A. N.A. -9.99 e-01 -9.29e-01 -9.51e-01 -1 

 

 
(a) Without the dynamic parameter a(t) 

  
(b) With the dynamic parameter a(t) 

Fig. 1. Influence of the dynamic parameter strategy (𝑓10) 

 
(a) 𝑓15  D = 30    D = 100    D = 500 

 
(b) 𝑓13  D = 30    D = 100    D = 500 

  
Fig. 2. Evolution of the solution with the number of iterations for different dimension sizes (D=30, 100 and 500) 
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V. CONCLUSION 

Dynamic Cognitive-Social Particle swarm optimization is 
an effective algorithm for optimizing several benchmark 
functions regardless the dimension. The algorithm has shown 
great reliability in getting a satisfactory solution when it was 
tested on different known common functions in the literature 
review. The Dynamic parameters along with controlling the 
recursive velocity equation that was integrated in the algorithm 
make the convergence to the global solutions faster. 

In order to better model the movement of bird or fish 
swarm, further investigation in finding better dynamic 
parameters along with clustering the set of particles will 
improve DCS-PSO in reaching the global solution faster.  
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