
Dynamic Cognitive-Social Particle Swarm

Optimization

Khelil Kassoul1,3
1Geneva School of Economics and

Management, GSEM

University of Geneva

Geneva, Switzerland

Khelil.Kassoul@etu.unige.ch

Samir Brahim Belhaouari
2College of Science and Engineering

Division of Informatic & Computing Technology

Hamad Bin Khalifa University

Doha, Qatar

sbelhaouari@hbku.edu.qa

Naoufel Cheikhrouhou
3Geneva School of Business Administration

University of Applied Sciences Western

Switzerland (HES-SO),

Geneva, Switzerland

naoufel.cheikhrouhou@hesge.ch

Abstract—Particle Swarm Optimization (PSO) is a heuristic

optimization algorithm based on the modeling of the behavior of

fishes and birds flock. This paper proposes a better version of

PSO, named Dynamic Cognitive-Social PSO “DCS-PSO”, for

global minima search by introducing optimal and dynamic

cognitive and social scaling parameters without taking into

consideration the inertia term. Furthermore, the velocity of each

particle is controlled systematically at each iteration to avoid

local minimum traps and to converge quickly and reliably

towards the global minimum. The proposed algorithm is more

suitable for high dimensional optimization problems and it has

gotten over the limitations of classical Particle Swarm

Optimization. Several experiments have been carried out, using

the proposed DCS-PSO, to optimize thirteen benchmark

functions and an important improvement has been observed, not

only in terms of reaching the best global solutions but also in

terms of convergence speed, compared to the existing benchmark

approaches.

Keywords—dynamic parameters, particle swarm optimization,

velocity, convergence

I. INTRODUCTION

The Particle Swarm Optimization (PSO) is an intelligent
algorithm first introduced by [1]. PSO is inspired by the social
collective behavior of fishes (or birds) flocking. Imagine the
following scheme: a group of fishes searches randomly for
food in an area in which there is only one piece. The fishes
know that food is far away on every move but Not all know
where food is. The effective strategy for finding food is
certainly to follow the fish nearest to the food.

PSO is a heuristic global optimization method (also an
algorithm), which learned from this scheme. Each potential
solution in the search space is a “fish” called “particle”. Each
particle learns from its own experience and from other particles
during the repeated flights. The learning from own experience
may be denoted as cognitive learning. In this case, the particle
memories the personal best position i.e. the best solution
visited so far by itself. The learning from others may be
denoted as social learning and the particle memories in this
case the best solution visited by any particle of the swarm
which called as global best position [2].

The PSO is an iterative algorithm, initializing with a set of
random solutions, called a swarm of particles, and then
searches for optima by updating iterations. Each particle could
be a potential solution and it has several parameters such as the

velocity, the best position visited by the particle so far, and the
current position [3]. In a d-dimensional search space, the
position and the velocity of each particle is represented by d-
dimensional vectors, which guide the moving of the particles
according to the individual and the collective knowledge. The
velocity and position of the i

th
 particle at iteration t are

represented as follows:

 𝑣𝑖(𝑡) = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑) (1)

 𝑥𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑) (2)

In the original version of PSO, the velocity and position, at
every iteration t, are updated as follows:

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑟1𝑐1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡))+ 𝑟2𝑐2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))

 (3)

 𝑥𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) + 𝑥𝑖(𝑡) (4)

where, 𝑣𝑖(𝑡) is the velocity of 𝑖𝑡ℎ particle at iteration 𝑡 ,

𝑝𝑖(𝑡) refers to the personal best position of the 𝑖𝑡ℎ particle,
𝑝𝑔(𝑡) refers to the global best position of the entire swarm, 𝑟1

and r2 are two random values in the interval [0,1] and the two
acceleration constants 𝑐1 𝑎𝑛𝑑 𝑐2 are known respectively as
cognitive and social scaling parameters. They are generally
fixed as 2.0. However, [4] in their study, 𝑐1 𝑎𝑛𝑑 𝑐2 are
function in terms of iteration t as follows:

 𝑐1 = 𝑐2 = 2 +
𝑡𝑚𝑎𝑥−𝑡

5𝑡𝑚𝑎𝑥
, (5)

where tmax represents the maximum number of iterations.

Since the introduction of the standard PSO, several
modifications are introduced and other versions have been
proposed. [5, 6], because the basic PSO [1] has its limitations
(e.g. in the field of plasmonics [7]). The idea of regulating of
the velocity has been presented in [8]. The authors study the
effects of velocity limitations and use different maximum
values to controlling the velocity.

To regulate the velocity, most common methods consist in
multiplying by factors when updating the value of velocity.

The key input in this research is the integration of dynamic
factors to regulate the velocity at each iteration, thus for two
reasons: One is to avoid local minimum traps and to converge
quickly and reliably towards the global minimum whereas the
other one is to achieve a balance between exploitation and
exploration. The proposed algorithm achieves better results

200

2021 International Conference on Automation, Robotics and Applications

978-0-7381-4290-6/21/$31.00 ©2021 IEEE

20
21

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
io

n,
 R

ob
ot

ic
s a

nd
 A

pp
lic

at
io

ns
 (I

CA
RA

) |
 9

78
-1

-6
65

4-
04

69
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
AR

A5
16

99
.2

02
1.

93
76

55
0

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

than the standard PSO algorithm and it is competitive when
compared with other benchmark methods.

II. PARTICLE SWARM OPTIMIZATION VERSIONS

The success of an optimization algorithm depends generally
on bringing about a compromise between global search and
local search throughout the whole search space. Considering of
this, an inertia weight, w, of a particle is brought into the
original equation and the velocity is updated as follow:

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))

 (6)

According to [9], most of the common PSO algorithms
developed until now include the inertia weight coefficient, and
it is commonly mentioned as the Standard PSO (SPSO). Table
I summaries several existing inertia weight strategies reported
in the literature.

Reference [20] proposes the introduction of a constriction
factor 𝜒 to insure the convergence of the PSO. In this case, the
velocity is updated according to the following equation:

𝑣𝑖(𝑡 + 1) = 𝜒[𝑣𝑖(𝑡) + 𝜑1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝜑2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))]

 (7)

where 𝜒 is given by:

𝜒 =
2

|2−𝜑−√𝜑2−4𝜑|
 (8)

and 𝜑 = 𝜑1 + 𝜑2 , 𝜑 > 4.

Thus, the equation 7 can be written as:

𝑣𝑖(𝑡 + 1) = 𝜒𝑣𝑖(𝑡) + 𝜒𝜑1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝜒𝜑2𝑟2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))]

 (9)

We can note that equation 9 becomes analogous to equation
6 with:

 𝑤 = 𝜒, 𝑐1 = 𝜒𝜑1 𝑎𝑛𝑑 𝑐2 = 𝜒𝜑2 (10)

A comparison between the constriction factor and the
inertia weight is proposed in the study of [12]. It has been
concluded that the use of the constriction factor gives better
quality solutions. When this factor is used, generally a value of
4.1 for 𝜑 is taken, and thus 𝜒 ≈ 0.7298 , with: 𝜑1 = 𝜑2 =
2.05 𝑎𝑛𝑑 𝑐1 = 𝑐2 = 1.49445. Note that 𝜒 can be taken as a
function. However, [21] proposed a constriction factor based
on the cosine defined in the following equation:

𝜒 =
cos(2

𝜋

𝑡𝑚𝑎𝑥
(𝑡−𝑡𝑚𝑎𝑥))+2.428571

4
 (11)

where tmax is the maximum iteration number.

TABLE I. DIFFERENT INERTIA WEIGHT STRATEGIES

N. Inertia weight formula Related description Reference

1 𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Constant inertia weight [10]

2 𝑤 = 0.5 +
𝑟𝑛𝑑()

2
 Random w [11]

3 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
∙ 𝑡 wmax, wmin: intial and final values of w Linear decreasing inertia weight [12]

4 𝑤 = 1.1 +
𝑝𝑔

𝐴𝑣𝑔(𝑝𝑖)
 tmax: maximum number of iterations Adaptive global-local best inertia weight [13]

5 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (
𝑡𝑚𝑎𝑥−𝑡

𝑡𝑚𝑎𝑥
)

𝑛

 p: global best position

 pi: personal best position

Linear time varying inertia weight [14]

6 𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∙ λ(𝑡−1)

λ =0.95

Simulated annealing inertia weight [15]

7 𝑤 = 𝑤𝑚𝑖𝑛 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) ∙
𝑟𝑎𝑛𝑘𝑖

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 Ranki: position of the i

th
 particle Adaptive particle rank [16]

8 𝑤 = 𝑤𝑚𝑖𝑛 ∙ 𝑢𝑖𝑡𝑒𝑟𝑡 u: constant value in the range [1.0001, 1.005] Nonlinear time varying inertia weight [17]

9 𝑤 = 𝑤𝑚𝑎𝑥 ∙ 𝑧 + (𝑤𝑚𝑖𝑛 − 𝑤𝑚𝑎𝑥)
𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥−𝑡
 Z: chaotic term. Chaotic inertia weight [18]

10
𝑤(𝑡 + 1) = 𝑤𝑖(𝑡) − (𝑤𝑖(𝑡) − 0.4) ∙ 𝑒𝑥𝑝 (− |(𝑝𝑔 − 𝑝𝑖) ∙

𝑡

𝑡𝑚𝑎𝑥

|)
Adaptive nonlinear inertia weight [19]

III. THE PROPOSED METHOD

The proposed method in this paper, named Dynamic
Cognitive-Social PSO “DCS-PSO”, is characterized by the
non-use of the inertia term and thus focusing on the social and
cognitive parts of the PSO along with controlling the speed
values. The idea of this strategy is based on the fact that the
particles in the swarm should follow those which have shown
an improvement in their respective position in the local search
space. So, a leaping strategy is used in order to escape
converging prematurely towards a local minimum. A new
cognitive and social functions 𝑐1(𝑡) and 𝑐2(𝑡) are introduced.
The function 𝑐1(𝑡) is incorporated using a logarithm function
defined in equation (12). The position of each particle is

limited by the range of [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥], where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are
respectively the lower and the upper bounds of variables.

𝑐1(𝑡) = 𝑎(𝑡)𝛼(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛) ∙ 𝑙𝑜𝑔(‖𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)‖ + 𝜖) (12)

where, 𝜖 is a very small positive value, 𝑎(𝑡) is a dynamic
cognitive parameter and 𝛼(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) is a dynamic
regulator exponent defined as follow:

𝛼(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) = {
5 , |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛| ≤ 10

1 , |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛| > 10
 (13)

Four initial values of 𝑎(0) are tested: (𝜒𝜋)
1

4 , cos(√𝜒𝜋),
sin(√𝜒𝜋) and 𝑒, while the social function is given as 𝑐2(𝑡) =
(𝜒𝜋)𝛼.

201

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

Every time, when a particle is stuck at a local minimum, the
velocity is near to zero, the particle could make a lead using the
logarithm function and thus skipping a possible local optimum.
To allow larger leaps at the start of iterations to explore the
whole search space and small leaps for a refinement in specific
solution-space regions, the idea of linear decreasing cognitive
parameter, with a dynamic damping coefficient 𝑑(𝑡) and a
damping coefficient k, is used as follow:

 𝑎(t+1) = 𝑑(𝑡) ∙ 𝑎(𝑡) (14)

 𝑑(𝑡 + 1) = 𝑘 ∙ 𝑑(𝑡) (15)

where the initial values of 𝑑(0) and k are taken respectively
0.9995 and 0.99999, while 𝑎(0) will take the four different
values given above.

The range of the velocity [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥] is selected to be:

{
𝑣𝑚𝑎𝑥 = 0.9⌈𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛⌉

𝑣𝑚𝑖𝑛 = −0.1⌈(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)⌉
 (16)

So, the velocity equation of the proposed DCS-PSO will be
updated as:

 𝑣𝑖(𝑡 + 1) = {

𝑣𝑚𝑎𝑥 𝑖𝑓 ℎ(𝑡) > 𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛 𝑖𝑓 ℎ(𝑡) < 𝑣𝑚𝑖𝑛

ℎ(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17)

where

ℎ(𝑡) = 𝑟1𝑐1(𝑡)(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑟2𝑐2(𝑡) (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡))

The strategy of the proposed DCS-PSO is described in
algorithm 1.

ALGORITHM 1. PSEUDOCODE OF DCS-PSO ALGORITHM

1. Initialization

 Step 1: Set the initial parameters
 Step 2: Initialize randomly the velocity and the position of the

particles

 Step 3: Set the actual position of particles equal to the first
best

 position values

Step 4: Evaluate the fitness values of particles and determine
the global best position.

2. Update of velocity and position of particles
 Step 5: Update the velocity of particles by equation (16)

 Step 6: Apply velocity limits

 Step 7: Update the position of particles by equation (4)
 Step 8: Apply position limits

3. Update of personal and global best positions

 Step 9: Update best and global positions

 Step 10: Update dynamic parameter and coefficients

4. Convergence procedure

 Step 11: Repeat step 5 to 11 until convergence or until
reacting the maximum number of iterations.

IV. RESULTS

A. Comparison of DCS-PSO with PSO variants

In this section, DCS-PSO is compared with existing
variants of PSO [22,23] on 8 numerical functions taken from
the report CEC2005 [24]. Table II gives a detailed description
of the 8 benchmark functions including the search spaces and
the global minimums. The dimension of all those functions are
fixed to 30. The swarm population size, the maximum number
of iterations, and the independent runs are respectively chosen
as 30, 10000 and 20. The PSO algorithm will stop when the
maximum number of iterations is reached. For the comparison
to be judicious, we consider, like in the study of [22], that
results below 10

-30
 are assumed to be 0.

The data presented in Table III, with the exception of the
DCS-PSO algorithm, are taken directly from the literature [22].
The comparison is based on mean fitness values, where, it can
be seen that DCS-PSO has a high-quality solution in the search
space compared to other PSO variants. The results in terms of
precision of the solution are clearly better. It can be noted that
the results for the four different initial values of a(t) tested are
almost close. However, the use of a(0) = e remains very
interesting and gives the best result.

B. Comparison of DCS-PSO with other optimization

algorithms

To test the performance of the proposed method, other
seven common benchmark functions are tested [25]. Table II
summaries the description of these functions. From Table IV, it
can be observed that the proposed algorithm has performed
significantly better over the standard PSO for all functions f9- f15.

For functions f9 et f14, the results are comparable with these of
DE [28] and P-PSO [27]. The result obtained for f12 are better
over P-PSO [27] and w-PSO [27]. The results for f10, f11, f13 and
f15 were compared only with the standard PSO due to the lack
of results in the literature.

The results given in Table IV demonstrates that the DCS-
PSO algorithm has achieved better results and are usually very
close to the global minimums of the functions tested. This is
certainly due, on the one hand, to the strategy of leaping which
allow to not falling into the local minima (see Fig. 1). Indeed,
if a particle found stuck i.e. its personal best position and its
current position have the same values; what does mean that its
velocity is close to zero. In this case, the logarithmic function
allows the particle to do a jumping (take a big value) and thus
escape converging towards a local minimum. Note that
equation (17) ensures that the value of velocity always remains
admissible. On the other hand, to the advantage of the
cognitive and damping parameters to achieve on a compromise
between the capacity of local and global search by improving
the power of PSO to overcome of the local extremums with
fast convergence speed near to the global value. To verify the
fast convergence, DCS-PSO is compared with the standard
PSO (Fig. 2). From this figure, we can note a great advantage
of DCS-PSO in offering a faster convergence and we can
observe that few iterations are needed to reach best solutions,
regardless the dimension [29].

202

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

TABLE II. DIFFERENT BENCHMARK FUNCTIONS USED [24, 25]

Name of

function
Equation Range Space 𝒇(𝒙∗) Features

Sphere 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 [−100,100] 0 Multimodal, scalable, separable, differentiable

Rosenbrock
𝑓2(𝑥) = ∑ (𝑏(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 𝑎)2), 𝑏 = 100,𝑛
𝑖=1

𝑎 = 1
[−2.048,2.048] 0 Unimodal, scalable, non-separable, differentiable

Schwefel 𝑓3(𝑥) = 418.9829 ∙ 𝑛 − ∑ 𝑥𝑖𝑠𝑖𝑛(√𝑥𝑖)
𝑁
𝑖=1 [−500,500] 0 Unimodal, scalable, partially-separable, differentiable

Weierstrass

𝑓4(𝑥) = ∑ (∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]
𝑘𝑚𝑎𝑥
𝑘=0) −𝑛

𝑖=1

𝑛 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘0.5)]𝑘𝑚𝑎𝑥
𝑘=0

𝑎 = 0.5 , 𝑏 = 3 , 𝑘𝑚𝑎𝑥 = 20

[−0.5,0.5] 0 Multimodal, scalable, separable, differentiable

Shifted Schwefel
1.2

𝑓5(𝑥) = ∑ (∑ 𝑧𝑗
𝑖
𝑗=1)

2
− 450𝑛

𝑖=1 [−100,100] -450 Shifted, unimodal, scalable, non-separable

Shifted Rastrigin 𝑓6(𝑥) = ∑ (𝑧𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) − 330𝑛

𝑖=1 [−5,5] -330 Shifted, multimodal, scalable, separable

Shifted Rotated

Rastrigin

𝑓7(𝑥) = ∑ (𝑧𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) − 330𝑛

𝑖=1

[−5,5]

-330

Shifted, rotated, multimodal, scalable, non-separable

Shifted Rotated

Weierstrass

𝑓8(𝑥) = ∑ (∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]
𝑘𝑚𝑎𝑥
𝑘=0) −𝑛

𝑖=1

𝑛 ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘0.5)]𝑘𝑚𝑎𝑥
𝑘=0

𝑎 = 0.5 , 𝑏 = 3 , 𝑘𝑚𝑎𝑥 = 20

[−0.5,0.5] 0 Shifted, rotated, multimodal, scalable, non-separable

Ackley

𝑓9(𝑥) =

−20𝑒𝑥𝑝 (−0.2√
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1) − 𝑒𝑥𝑝 (

1

𝑁
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖

𝑁
𝑖=1) +

20 + 𝑒

[−32,32] 0 Multimodal, non-convex, differentiable

Schwefel 2.20
𝑓10(𝑥) = ∑ |𝑥𝑖|

𝑛
𝑖=1 [−100,100] 0 Multimodal, non-convex, differentiable

Periodic 𝑓11(𝑥) = 1 + ∑ sin(𝑥)2 − 0.1𝑒∑ 𝑥𝑖
2𝑛

𝑖=1𝑛
𝑖=1

[−10,10]

0
Multimodal, non-separable, differentiable, non-convex

SumSquare
𝑓12(𝑥) = ∑ 𝑖𝑥𝑖

2𝑛
𝑖=1

[−10,10] 0 Unimodal, convex

Alpine 𝑓13(𝑥) = ∑ |𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|
𝑛
𝑖=1 [−10,10] 0

 Multimodal, non-convex, differentiable, non-
separable,

Griewank 𝑓14(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1

[−600,600]

0
Unimodal, non-convex

Exponential

𝑓15(𝑥) = −𝑒𝑥𝑝(−0.5 ∑ 𝑥𝑖
2𝑛

𝑖=1)

[−1,1] -1 Unimodal, convex, differentiable, non-separable

𝑧 = 𝑥 − 𝑜 for 𝑓5 and 𝑓6 and 𝑧 = (𝑥 − 𝑜) ∙ 𝑀 for 𝑓7 and 𝑓8. 𝑜 = (𝑜1, 𝑜2, … , 𝑜𝑛) is the (shifted) gloabal optimum and 𝑀 is the orthogonal square matrix.

TABLE III. DCS-PSO PERFORMANCE COMPARISON WITH THE 9 PSO VARIANTS

Function ScPSO CLPSO UPSO SG-PSO SP-PSO
Local

PSO-cf

Global

PSO-cf

Local

PSO-w

Global

PSO-w

Proposed method: DCS-PSO (a)

𝒂 = (𝝌𝝅)
𝟏
𝟒 𝒂 = 𝐜𝐨𝐬(√𝝌𝝅) 𝒂 = 𝒔𝒊𝒏(√𝝌𝝅) 𝒂 = 𝒆

𝑓1 0.00e+00 0.00e+00 9.07e+03 0.00e+00 1.48e−06 1.34e+04 1.00e+03 1.79e+02 1.00e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

𝑓2 3.10e+01 4.81e+01 1.03e+03 2.08e+02 2.20e+01 1.72e+03 1.07e+02 1.27e+02 1.07e+02 0.00e+00 8.11e+01 3.23e+00 0.00e+00

𝑓3 2.21e+03 5.46e+03 7.98e+03 4.20e+03 4.03e+03 7.36e+03 4.46e+03 6.41e+03 4.46e+03 3.81e-04 4.73e+03 3.81e-04 3.81e-04

𝑓4 3.30e−01 2.42e−01 2.64e+01 1.60e+00 0.00e+00 2.70e+01 1.83e+00 4.37e+00 1.83e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

𝑓5 3.97e+04 5.49e+06 7.85e+06 5.70e+06 1.73e+05 1.01e+07 6.00e+06 5.89e+06 6.00e+06 1.29e+05 2.29e+05 1.65e+05 1.60 e+04

𝑓6 3.75e+01 2.16e+02 2.48e+02 1.57e+02 1.29e+02 4.01e+02 1.38e+02 2.93e+02 1.38e+02 5.21e+00 7.04e+00 5.52e+00 4.63e+00

𝑓7 1.74e+02 1.70e+02 3.90e+02 2.31e+02 1.72e+02 5.72e+02 2.28e+02 3.83e+02 2.28e+02 -3.07e+01 -2.86e+01 -3.78e+01 -5.25e+01

𝑓8 2.73e+01 3.27e+01 3.98e+01 2.77e+01 2.89e+01 3.65e+01 2.99e+01 3.37e+01 2.99e+01 4.01e+01 4.00e+01 3.94e+01 3.26e+01

TABLE IV. DCS-PSO PERFORMANCE EVALUATION

Function PSO
GA

[26]
BitABC

[26]
P-PSO [27]

w-PSO

[27]

DE

[28]

FEP

[28]

Proposed method: DCS-PSO (a)

𝒂 = (𝝌𝝅)
𝟏
𝟒 𝒂 = 𝐜𝐨𝐬(√𝝌𝝅) 𝒂 = 𝒔𝒊𝒏(√𝝌𝝅) 𝒂 = 𝒆

𝑓9 1.63e+01 1.22e-02 1.22e-04 4.22e-15 1.05e-06 9.70e-08 1.80e-02 4.99e-14 7.08e-01 5.00e-14 8.88e-16

𝑓10 4.58e+02 N.A. N.A. N.A. N.A. N.A. N.A. 3.82e-13 4.99e+00 3.26e-13 0.00e+00

203

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

𝑓11 1.75e+00 N.A. N.A. N.A. N.A. N.A. N.A. 0.90e+00 0.90e+00 0.90e+00 0.90e+00

𝑓12 1.87e+03 N.A. N.A. 7.12e+01 1.59e-12 N.A. N.A. 0.00e+00 5.00e+00 0.00e+00 0.00e+00

𝑓13 1.44e+01 N.A. N.A. N.A. N.A. N.A. N.A. 9.63e-11 7.01e-07 2.86e-11 4.27e-02

𝑓14 1.37e+02 7.39e-02 1.45e-05 7.02e-02 6.84e-02 0.00e+00 1.60e-02 9.65e+00 2.32e+01 1.12e+01 0.00e+00

𝑓15 -4.60e-01 N.A. N.A. N.A. N.A. N.A. N.A. -9.99 e-01 -9.29e-01 -9.51e-01 -1

(a) Without the dynamic parameter a(t)

(b) With the dynamic parameter a(t)

Fig. 1. Influence of the dynamic parameter strategy (𝑓10)

(a) 𝑓15 D = 30 D = 100 D = 500

(b) 𝑓13 D = 30 D = 100 D = 500

Fig. 2. Evolution of the solution with the number of iterations for different dimension sizes (D=30, 100 and 500)

204

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

Dynamic Cognitive-Social Particle swarm optimization is
an effective algorithm for optimizing several benchmark
functions regardless the dimension. The algorithm has shown
great reliability in getting a satisfactory solution when it was
tested on different known common functions in the literature
review. The Dynamic parameters along with controlling the
recursive velocity equation that was integrated in the algorithm
make the convergence to the global solutions faster.

In order to better model the movement of bird or fish
swarm, further investigation in finding better dynamic
parameters along with clustering the set of particles will
improve DCS-PSO in reaching the global solution faster.

REFERENCES

[1] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: IEEE
International Conference on Neuran Networks, 1995, pp. 1942–1948.

[2] Bansal, J.C.: Particle swarm optimization. Evolutionary and Swarm
Intelligence Algorithms, pp. 11–23. Springer, New York (2019)

[3] Taherkhani, M., & Safabakhsh, R. (2016). A novel stability-based
adaptive inertia weight for particle swarm optimization. Applied Soft
Computing, 38(4), 281–295.

[4] T. Yalcinoz and K. Rudion, "Economic Load Dispatch Using an
Improved Particle Swarm Optimization based on functional constriction
factor and functional inertia weight," 2019 IEEE International
Conference on Environment and Electrical Engineering and 2019 IEEE
Industrial and Commercial Power Systems Europe (EEEIC / I&CPS
Europe), Genova, Italy, 2019, pp. 1-5.

[5] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proc. IEEE Congress on Evolutionary Computation
(CEC’99), Washington, DC, 1999, pp. 1945-1950.

[6] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle
swarm optimization,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 39, pp. 1362-1381, 2009.

[7] S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle,
“Particle swarm optimization and evolutionary methods for plasmonic
biomedical applications,” in Proc. IEEE Congress on Evolutionary
Computation (CEC’11), New Orleans, LA, 2011, pp. 2315-2320.

[8] Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle
swarm theory. Proceedings of the Sixth International Symposium on
Micro Machine and Human Science (MHS ’95), pp. 39–43.

[9] Freitas, D.; Lopes, L.; Morgado-Dias, F. Particle Swarm Optimisation:
A Historical Review Up to the Current Developments. Entropy 2020, 22,
362.

[10] Y. Shi and R. Eberhart., “A modified particle swarm optimizer”, In
Evolutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on, pages 69–73. IEEE, 2002.

[11] R.C. Eberhart, S. Yuhui, Tracking and optimizing dynamic systems with
parti-cle swarms, in: IEEE Congress on Evolutionary Computation,
Seoul, 2001, pp.94–100.

[12] Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the Congress

on Evolutionary Computation (CEC), La Jolla, CA, USA, 16–19 July
2000; Volume 1, pp. 84–88.

[13] M.S. Arumugam, M.V.C. Rao, On the improved performances of the
par-ticle swarm optimization algorithms with adaptive parameters,
cross-overoperators and root mean square (RMS) variants for computing
optimal controlof a class of hybrid systems, Appl. Soft Comput. 8 (2008)
324–336.

[14] Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization. Comput. Oper. Res. 2006, 33,
859–871.10.1016/j.cor.2004.08.012.

[15] W. Al-Hassan, MB Fayek, and SI Shaheen, “Psosa: An optimized
particle swarm technique for solving the urban planning problem”, In
Computer Engineering and Systems, The 2006 International Conference
on, pages 401–405. IEEE, 2007.

[16] B.K. Panigrahi, V.R. Pandi, S. Das, Adaptive particle swarm
optimization approach for static and dynamic economic load dispatch,
Energy Conversion and Management 49 (2008) 1407–1415.

[17] B. Jiao, Z. Lian, X. Gu, A dynamic inertia weight particle swarm
optimization algorithm, Chaos, Solitons & Fractals 37 (2008) 698–705.

[18] Y. Feng, G. Teng, A. Wang, Y.M. Yao, Chaotic inertia weight in
particle swarm optimization, in: Second International Conference on
Innovative Computing, Information and Control (ICICIC 07), 2007, pp.
475–1475.

[19] Y. Feng, Y.M. Yao, A. Wang, Comparing with chaotic inertia weights in
particle swarm optimization, in: International Conference on Machine
Learning and Cybernetics, August 2007, 2007, pp. 329–333.

[20] M. Clerc (1999): The swarm and the queen: Towards a deterministic and
adaptive particle swarm optimization. Congress on Evolutionary
Computation, Washington, D. C., pp. 1951–1957.

[21] Lu Y, Liang M, Ye Z, Cao L (2015) Improved particle swarm
optimization algorithm and its application in text feature selection. Appl
Soft Comput 35:629–636.

[22] Koyuncu H, Ceylan R (2019) A PSO based approach: scout particle
swarm algorithm for continuous global optimization problems. J
Comput Des Eng 6(2):129–142.

[23] Shin, Y. B., & Kita, E. (2014). Search performance improvement of
Particle Swarm Optimization by second best particle information.
Applied Mathematics and Computation, 246, 346–354.

[24] P.N. Suganthan, N. Hansen, et al., Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter optimization,
KanGALReport, 2005.

[25] Hussain K, Salleh M, Cheng S and Naseem R 2017 Common
Benchmark Functions for Metaheuristic Evaluation: A Review Int.
Journal on Informatics Visualization 1 218-23.

[26] D. Jia, X. Duan, and M. K. Khan, “Binary artificial bee colony
optimization using bitwise operation,” Computers and Industrial
Engineering, vol. 76, pp. 360–365, 2014.

[27] Agrawal A et al (2018) Particle swarm optimization with probabilistic
inertia weight. In: Harmony search and nature inspired optimization
algorithms, ICHSA 2018, pp 239–248.

[28] Mirjalili S , Lewis A . The whale optimization algorithm. Adv Eng
Software 2016;95:51–67 .

[29] A. U. Rehman, A. Islam and S. B. Belhaouari, "Multi-Cluster Jumping
Particle Swarm Optimization for Fast Convergence," in IEEE Access,
vol. 8, pp.189382-189394,2020, doi: 10.1109/ACCESS.2020.3031003.

205

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on July 19,2022 at 05:59:03 UTC from IEEE Xplore. Restrictions apply.

