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Abstract. Evaluating appropriate error measures to determine demand forecast accuracy is essential in 

model selection, however there is no approach that simultaneously evaluates different model classes 

and several inter-dependent error measures. Furthermore, error measures may yield conflicting results 

making it more difficult to select the ‘best’ forecasting model when considering several error measures 

simultaneously. This paper proposes a novel process of evaluation of demand forecasting models using 

the analytical network process combined with the technique for order of preference by similarity to 

ideal solution (ANP-TOPSIS) which incorporates interdependence amongst error measures. The 

methodology is validated through an implementation case of a plastic bag manufacturer demonstrating 

that the use of the ANP-TOPSIS approach, avoided the selection of an inappropriate forecasting model 

due to conflicting error measurements. Moreover, a sensitivity analysis finds that the interdependence 

between the error measures is found to impact the relative closeness to the ideal solution, even though 

it plays a minimal role in the final ranking of the forecasting models.  
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1 Introduction 

Many demand forecasting models have been developed to accurately determine the real future demand 

of products acting as the foundation for efficient supply chain planning. Given the amount of different 

forecasting quantitative, qualitative and hybrid forecasting models available, researchers and 

practitioners alike are confronted with the issue of selecting the most appropriate model. Moreover, 

selecting a demand forecasting model can be a challenging task if forecasters rely mainly on the results 

of error measures to support selection. Although using several error measures to evaluate forecasting 

models is recommended, they can oftentimes yield conflicting results; a forecasting model may have a 

better performance using one error measure and an alternative forecasting model shows better 

performance using another error measure. Furthermore, the Akaike Information Criteria and Schwartz’s 

Bayesian Criterion approaches to selecting demand forecasting models are limited in their ability to 

compare forecasting models within different classes, for example, a time-series forecast against a causal 

model or a hybrid model combining both quantitative and qualitative methods.  

Practitioners usually select a forecasting model based the performance of one or several error measures 

applied to all product families and categories. The use of an inappropriate error measure could lead to 

the selection of less effective forecasting model, highlighting the importance of selecting a number of 

forecast error measures to evaluate the models. Although the high similarity in the calculation of many 

error measures, often times, different error measures have yielded conflicting results when evaluating 

alternative forecasting models, making it more difficult for practitioners to select the best forecasting 

model for their purpose. This paper proposes a hybrid multi-criteria decision making (MCDM) 

approach, the Analytic Network Process coupled with the Technique for Order of Preference by 

Similarity to Ideal Solution (ANP-TOPSIS) to support the selection of the best forecasting model out of 

a set of alternatives based several error measures. In contrast to the Analytical Hierarchical Process 

(AHP) approach, the advantage of the ANP approach is that the interdependence amongst the evaluation 

criteria, the error measures, is included in the calculation of criteria weights. In addition, ANP-TOPSIS 

is a straight forward approach that can be adopted in industry.  
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The methodology is demonstrated on an implementation case of a plastic bag manufacturing firm for 

the selection of the best forecasting model out of five alternatives of different classes: two autoregressive 

time-series models, one exponential smoothing model and two hybrid models that include judgmental 

adjustment of an ARIMA model. The final ranking is tested for robustness via a sensitivity analysis of 

the evaluation criteria weights (error measures) as well as by omitting the interdependence between the 

error measures. The results show that despite conflicting error measurements, the ANP-TOPSIS 

approach presented in the paper enables the decision maker to select the best forecasting model for their 

particular case. 

This paper is divided into 6 sections: the next section provides an overview of forecasting model 

selection. Section 3 outlines the proposed ANP-TOPSIS approach that supports forecasting model 

selection using several error measures. The methodology is validated through an implementation case 

of a plastic bag manufacturer in Section 4. Section 5 provides a critical discussion of the results, followed 

by the conclusion in Section 6.   

2 State of the Art 

2.1 Background 

Exponential smoothing models and autoregressive models are the most commonly used time-series 

forecasting in demand planning (Petropoulos et al., 2018). These models have high applicability to time-

series data and ease of understanding in  business contexts (Alvarado-Valencia et al., 2017).  

In addition to purely statistical models, judgmental forecasting is frequently employed as a stand-alone, 

such as for new product market introductions, or is incorporated into the statistical forecast to create a 

hybrid forecast which includes both quantitative and qualitative information, through judgmental 

adjustments, bootstrapping, combination, and decomposition (Arvan et al., 2019). Marmier and 

Cheikhrouhou (2010) develop a hybrid forecast based on a systematic approach that structures and 

integrates judgment into demand forecasting using event-based factors and extend the model to adjust 
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the forecast based on collaborative human judgment improving the forecasting model MAPE and MAE 

(Cheikhrouhou et al., 2011). Van den Broeke et al. (2018) use several error measures to evaluate hybrid 

forecasting models and find that accuracy can either improve, remain the same or decrease depending 

on the case and time horizon. Therefore, hybrid forecasting models should be carefully considered 

together with statistical forecasting models when evaluating alternative models. 

Forecast accuracy is the most important criterion to determine the performance of a forecast (Ha et al., 

2018) and the choice of the error measure is highly important in evaluating the forecasting models 

(Davydenko & Fildes, 2013). Although error measures provide quantitative support in the performance 

evaluation of a forecasting model, the selection of a forecasting model cannot be solely selected based 

on any one specific error measure due to the risk of ignoring an important aspect of the forecast that 

contributes to its accuracy. Scale dependent methods, such as the mean error (ME), mean squared error 

(MSE), root mean squared error (RMSE), and the MAE can indicate biasness of the forecast as well as 

how spread out the forecasted values are from the actuals. In the case of ME, it is possible that a negative 

error on one data point would counterbalance a positive error on another data point. The median could 

be used instead of the mean to counter this effect (Franses, 2011) or by using the absolute values of the 

error. On the other hand, the MAE may skew the mean when confronted with large outliers (Davydenko 

& Fildes, 2016). RMSE is generally preferred to MSE as it is in the same scale as the data, even though 

it is more sensitive to outliers than MAE (Hyndman & Koehler, 2006). The RMSE gives extra weight 

to large errors due to the squaring function and is sensitive to scale, and the results frequently differ 

when applied to various sets of data. Hassani et al. (2015) use the RMSE to evaluate the performance of 

17 univariate and multivariate forecasting models to determine the price of gold. The results of the 

RMSE showed that no model outperformed another in the short run and the long run. However, the 

exponential smoothing model had the lowest average RMSE over the full forecasting horizon of 24 

months. Using more than one error measures can also yield conflicting accuracy results. Fildes et al. 

(2011) evaluate the accuracy of several airline traffic forecasting models using four error measures 
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which result in conflicting results, particularly between RMSE and Geometric Mean Relative Absolute 

Error (GReIAE). They conclude that several error measures must be considered when comparatively 

comparing different forecasting models. Similarly, in determining the effectiveness of judgmental 

forecast adjustments, several papers used multiple error measures to determine the accuracy of their 

models and arrived and opposing conclusions (Fildes et al., 2009; Franses & Legerstee, 2010; Trapero 

et al., 2012). Conflicting conclusions resulting from using more than one error measure can be confusing 

and damaging to decision-makers (Davydenko & Fildes, 2013) and none of the abovementioned articles 

propose an approach in selecting a forecasting model with conflicting error measurements.  

Accuracy measures based on percentage errors, such as mean percentage error (MPE), root mean 

squared percentage error (RMSPE) and MAPE, allow for comparison across different data sets as they 

are scale independent. The MPE is a good measure of the relative size and direction of the bias and the 

RMSPE takes only positive values due to the squaring function and therefore provides an average 

relative size of the error. On the other hand, both are very sensitive to large outliers (Davydenko & 

Fildes, 2016). The MAPE is one of the most commonly used and highly recommended error measures 

in demand forecasting. However, the MAPE is often criticised for being asymmetrical, meaning it is 

pulled upward due to the heavier penalty of positive errors. In addition, the MAPE assumes a meaningful 

zero which is not considered an issue in demand forecasting when referring to quantity, except 

potentially in the case of returns. The MAPE is therefore best used when dealing with positive actual 

observations (Ren & Glasure, 2009). 

Furthermore, the R2 should not be used independently without considering its result along with other 

error measures as R2 ignores the forecast bias and the results may show a perfect result of 1 even when 

the forecasted values are very different from the actuals (Armstrong, 2001). Table 1 provides a summary 

of the error measures referred to in the literature and the result when considered independently. The 

error (ei) is the difference between the forecast (Fi) and the actual observation (Oi) for point i in the time 

series and N is the number of data so that, 𝑒𝑖 = 𝐹𝑖 − 𝑂𝑖. The error measures in Table 1 are comparatively 
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simple accuracy measures as they are intuitive and relatively easy to calculate and are most likely to be 

used in industry. Many more sophisticated error measures have been developed in the literature but are 

omitted in the context of this article due to their specificity and likelihood of being widely used in 

industry. 



Table 1: Summary of the literature on error measures in their application to forecasting model selection  

Error measure Equation Advantages Constraints References 

Mean Error (ME) 

𝑀𝐸 =
∑ 𝑒𝑖

𝑁
 

 Indicates bias, range & variance  Positive and negative values 

negate each other 

Scale dependent 

Franses, (2011) 

Mean Squared Error 

(MSE) 𝑀𝑆𝐸 =
∑ 𝑒𝑖

2

𝑁
 

 Indicates bias, range & variance  Scale dependent 
 

Root Mean Squared 

Error (RMSE) 
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

 Indicates bias, range & variance 

 Generally preferred to MSE as 

same scale as data 

 Sensitive to outliers 

Sensitive to Scale  

Adds weight to large outliers 

Hyndman and 

Koehler, (2006) 

Davydenko & Fildes, 

(2016) 

Mean Absolute Error 

(MAE) 𝑀𝐴𝐸 =
∑|𝑒𝑖|

𝑁
 

 Indicates bias, range & variance  Outliers create skewed mean 

Scale dependent 

Davydenko & Fildes, 

(2016) 

Mean Percentage Error 

(MPE) 

𝑀𝑃𝐸 =
∑

𝑒𝑖
𝑂𝑖

𝑁
 

 Accuracy based on percentage 

 Allow comparison across data sets 

 Scale independent 

 Relative size and direction of bias 

 Sensitive to large outliers Armstrong and 

Davydenko & Fildes, 

(2016) 

Root Mean Squared 

Percentage Error 

(RMSPE)  
𝑅𝑀𝑆𝑃𝐸 =

√
∑ (

𝑒𝑖
𝑂𝑖

)
2

𝑁
 

 Accuracy based on percentage 

 Allow comparison across data sets 

 Scale independent 

 Does not consider negative 

values due to squaring 

function, therefore provides 

relative error 

 Sensitive to large outliers 

Armstrong and 

Davydenko & Fildes, 

(2016) 

Mean Absolute 

Percentage Error 

(MAPE) 𝑀𝐴𝑃𝐸 =
∑ |

𝑒𝑖
𝑂𝑖

|

𝑁
 

 Accuracy based on percentage 

 Allow comparison across data sets 

 Scale independent 

 Asymmetrical due to heavier 

penalties on positive error 

Ren and Glasure, 

(2009) 

Coefficient of 

determination (R2) 
𝑅2 = 1 −

∑(𝑂𝑖 − 𝐹𝑖)2

∑(𝑂𝑖 − 𝑂̅)2
 

 Coefficient of determination 

 Measures proportion of variability 

in the linear function 

 Ignores forecast bias Armstrong, (2001) 

 

 



2.2 Forecasting model selection 

As there are a large number of feasible forecasting models to predict demand, demand planners in 

industry often find it difficult to know which is the best model for their demand forecast, particularly in 

the case of conflicting error measurements. The Akaike Information Criterion (AIC) is one of the known 

methods used in automatic model selection, introduced by Akaike (1974). Although it is very effective 

in selecting models within the same model class and even comparing non-nested models (e.g., linear vs 

non-linear models), this method cannot be used for the automatic model selection of models from 

different forecasting model classes, such as between exponential smoothing and autoregressive models. 

The same is true with the Schwartz’s Bayesian Criterion (SBC), which, similar to AIC, also considers 

the goodness of fit of the data with a complexity penalty. Although the SBC penalises the complexity 

more than AIC, the approach is still limited to assessing models within the same class.  

Villegas et al. (2018) propose using support vector machines (SVM) to select the best forecasting model, 

out of a pool of alternatives at each moment in time, as the model variables change such as its relative 

accuracy performance and the fitted parameters of the model. They find that using SVM results in a 

higher overall forecast accuracy. Ghobbar and Friend (2003) develop a predictive error forecasting 

method to evaluate demand forecasting models in the airline manufacturing industry based on their 

factor levels. They use MAPE as the dependent evaluation criteria. Neither of them consider hybrid 

forecasts, which integrate judgmental information. Oh and Morzuch (2005) evaluate eight competing 

demand forecasts for tourism in Singapore based on six performance measures measuring bias and 

forecast error including MAPE, MAE, RMSE, AIC and SBC. Their findings show that using different 

performance measures leads to the selection of different forecasting models. Taylor and McSharry 

(2007) evaluate six forecasting models to determine the electricity demand based for ten European 

countries using the MAPE and MAE which, when ranked, yielded conflicting results, except for the 

highest ranked model which was consistently first. Petropoulos et al. (2018) and W. Han et al. (2019) 

explore forecasting model selection based only on subjective expert judgment and find that the selected 

models perform better based on the error measures used (MAE, MAPE, MASE and MPE) than the 

forecasting models selected using AIC, and find that collaborative judgment is better than single 

judgment and statistical selection. Davydenko & Fildes (2013) investigate the use of the MAPE and 
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Median average percentage error (MdAPE) on evaluating judgmental adjustment of statistical forecasts 

and conclude that due to conflicting results of the MAPE and several other error measures, forecasters 

in companies cannot just rely on the MAPE to determine the model’s performance. However, 

Davydenko & Fildes (2013) and the aforementioned literature do not propose an approach to select the 

most appropriate model when using multiple error measures for evaluation and particularly in the case 

of conflicting error measurements.   

Xu and Ouenniche (2012) evaluate forecasting models for crude oil prices based on trade-offs between 

several error measures using elimination and choice expressing reality (ELECTRE) I & II or preference 

ranking organisation method for enrichment evaluation (PROMETHEE) and find that the best 

performing models are selected using both methods. Velasquez & Hester (2013) find that although 

PROMETHEE is easier to use than ELECTRE, it lacks clarity in weight determination for the criteria 

and ignores potential interdependencies between them. Mehdiyev et al. (2016) propose the use of the 

PROMETHEE approach to evaluate the relative performance of several multiclass classification 

algorithms: Bayesian Networks, Artificial Neural Networks, SVMs, Logistic Regression and decision 

trees, based on several error measures. However, neither Mehdiyev et al. (2016) or Xu and Ouenniche 

(2012) consider the evaluation of multiclass demand forecasting models based on interdependent error 

measures.  

ANP applies pairwise comparisons to compare alternatives as well as estimate weighting to the criteria 

and priority scales and are relatively straightforward to use (Saaty, 2001; Velasquez & Hester, 2013). 

On the other hand, the ANP method is susceptible to rank reversal at the end of the process, which could 

result in the final ranking being reversed in order. Using TOPSIS addresses the issue of rank reversal 

when a non-optimal alternative is introduced and allows for easier ranking between alternatives (Sipahi 

& Timor, 2010). However, the TOPSIS method does not consider criteria interrelationships, nor does it 

provide an easy method for determining criteria weights, and is often paired with the ANP method (Tao 

et al., 2012).  
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The hybrid MCDM approach of ANP-TOPSIS is robust, based on the constant number of calculation 

steps for TOPSIS regardless of the number of attributes. It is also scalable and takes into consideration 

the inherent interdependence between the evaluation criteria (Velasquez & Hester, 2013). Lastly, it is 

also able to analyse both quantitative and qualitative information (Kara & Cheikhrouhou, 2014) and has 

the ability to consider the interdependence between evaluation criteria (error measures) of which none 

of the aforementioned MCDM approaches do. 

Table 2 includes some of the different approaches in the literature for selecting forecasting models based 

on various evaluation and information criteria. The methods using information criteria such as those 

proposed by Akaike (1974), Petropoulos et al. (2018) and Villegas et al. (2018) only allow a comparison 

of forecasting models within the same model class as previously mentioned signifying that hybrid 

forecasting models cannot be compared to a purely statistical model using these approaches. MCDM 

approaches have been applied to evaluate forecasting models relative to each other in Mehdiyev et al. 

(2016) and Xu and Ouenniche (2012) and show promising results when comparing time-series models 

with regression models and classification algorithms such as decision trees. However, neither have 

considered hybrid forecasting models which combine quantitative and qualitative information to 

develop a forecast, nor have they considered the interdependence between error measures.  

The state of the art presents several approaches to evaluating different forecasting models in diverse 

applications primarily using error measures and information criteria, like AIC and SBC, as the 

evaluation criteria. The use of AIC and SBC for model evaluation limits the comparison with models 

within the same model class, such as exponential smoothing time-series models. In addition, selection 

of the best forecasting model may be improved considering several error measures simultaneously (Xu 

& Ouenniche, 2012). There has not been any research yet proposing an approach on how to evaluate 

multiclass demand forecasting models based on several error measures that have interdependencies. 

This paper proposes an MCDM approach, ANP-TOPSIS, to support the selection of multiclass demand 

forecasting models with conflicting performances. 
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Table 2: Overview of the methods for forecasting model evaluation and selection 

 

 

3 Methodology and Calculation 

The literature review highlights the lack of an approach that evaluates demand forecasting models of 

different classes based on several error measures and their interdependencies as evaluation criteria. An 

MCDM approach acts as an effective tool to aid in the decision-making process when several evaluation 

Reference 

 

 

Evaluation and 

selection 

method 

Forecasting models 

Evaluation criteria 

Time- 

series  

Regressio

n  Hybrid  

Akaike (1974) AIC 
✓    Information criteria  

Ghobbar and 

Friend (2003) 

PEFM 

✓ ✓  

 MAPE 

Oh and Morzuch 

(2005)  

Comparison of: 

Error Measures, 

Information 

Criteria, 

Biasness 

✓ ✓  

 3 Error Measures: MAE, 

MAPE, RMSE 

 AIC & SBC 

 Biasness 

Taylor and 

McSharry (2007) 

Comparison of: 

Error Measures ✓ ✓  

 2 Error Measures: MAPE & 

MAE 

Xu and Ouenniche 

(2012) 

ELECTRE I 

ELECTRE II 

PROMETHEE ✓ ✓  

 13 Error Measures 

Mehdiyev et al. 

(2016) 

PROMETHEE  

 ✓  
 11 Error measures 

 Classification performance 

measures 

Villegas et al. 

(2018) 

SVM 

✓   

 Information criteria (AIC & 

SBC) 

 Estimation information 

(autocorrelation) 

 Statistical tests (P-values) 

Petropoulos et al. 

(2018) 

Judgmental  

selection 

✓  ✓ 

 MAE for evaluation 

 MAPE, MPE and Mean 

Absolute Scaled Error 

(MASE) to measure 

performance 
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criteria must be considered. In addition, it allows for a comparison between models of different classes 

as each alternative model is represented by its performance in the evaluation criteria. 

We propose an ANP-TOPSIS approach which is able to 1) structure the problem into a network of 

evaluation criteria and competing forecasting models, 2) consider multiple evaluation criteria and the 

influence they have on one another (interdependence), 3) provide a trade-off between evaluation criteria 

to compensate for poor results (compensatory method) and 4) compare forecasting models of different 

classes (quantitative and hybrid models) via the normalisation of the evaluation criteria results. 

Figure 1 illustrates the seven main steps in the ANP-TOPSIS process. Steps 1-4 represent the ANP part 

and steps 5-7 represent the TOPSIS part of the hybrid MCDM approach.  

 

 

The first step is to gather a team of experts that will use their knowledge and experience to: select the 

alternative forecasting models in step 2; decide upon the evaluation criteria; and allocate priorities to the 

individual criteria using pairwise comparisons in step 3. This team also determines the interdependencies 

between criteria and reprioritises the criteria based on their dependence on each other in step 4. The 

Team of Decision makers (Step 1) 

Model alternatives (Step 2) 

Determine criteria, weighting & solutions (Step 3) 

Determine interdependencies (Step 4) 

Establish decision matrix (Step 5) 

Rank alternatives (Step 6) 

Select the best alternative (Step 7) 

Figure 1: Proposed ANP-TOPSIS framework for forecasting model selection  
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decision matrix is calculated in step 5 which is the basis for determining the relative closeness to the 

ideal solution that provides the final ranking in steps 6 and 7. Each step is explained in detail in the 

following sections. 

The methodology is demonstrated in an empirical implementation case based on data and additional 

information collected from a plastic bag manufacturer in the south of Spain taken from (Cheikhrouhou 

et al. 2011). The implementation case is based on three years of daily sales data of plastic bags from a 

manufacturer in Spain. The company has four major supermarkets as customers that make up the 

majority of their sales. The daily sales data are aggregated to monthly buckets for analysis and 

forecasting purposes. The time-series used are composed of the aggregate monthly demand collected 

over a period of 36 consecutive months (mth1 to mth36) from January to December representing 3 years 

(Y1 to Y3) seen in Figure 2. The objective is to plan the demand for the fourth consecutive year (Y4) 

from January to December and select the forecast which best fits the actual results based on a number 

of evaluation criteria. 

 

 

 

The time-series for the historical sales of the polyethylene bag (Figure 2) shows two seasonal peaks per 

year just before summer in the 5th month of each year (May), and the 10th month of each year (October) 
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Figure 2: Historical data of polyethylene bag sales over three years 
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just before the winter period. The seasonal pattern of 12 months is confirmed via the autocorrelation 

function applied to the 36 months of data. 

Step 1: Preparation and formation of group of decision makers and data treatment 

The first step is to compose a team of decision makers (DMs) of experts in the field that can define and 

assess the evaluation criteria. The DMs should have common interests related to the objectives of the 

analysis and aim to obtain a consensus in the decision making process (Al-Harbi, 2001). This team of 

experts will also be involved in the evaluation and approval of the final ranking results and therefore 

should be composed of those with the knowledge and capability of making decisions related to demand 

forecasting within the organization. Two decision makers (DM) are responsible for the prioritisation and 

weighting of the evaluation criteria through pairwise comparisons for the plastic bag manufacturer. The 

decision makers include two of the authors of this paper who performed pairwise comparisons of the 

seven error measures to determine attributed weightings. Both DMs have an academic and professional 

experience in forecast performance evaluation. 

Step 2: Selection of forecasting model alternatives 

The DMs agree upon alternative forecasting models that will be compared against one another other. It 

is not recommended to select too many alternatives due to the difficulty in conducting pairwise 

comparisons with a high number of alternatives, and criteria. A commonly used rule of thumb is to 

choose between 5-9 alternatives in order to optimize judgmental decision making.  

The historical sales data of the polyethylene bag is plotted as a time-series in Figure 2 and shows a strong 

linear trend and seasonality with peaks in summer and winter due to demand increases in plastic bags 

during the months before summer and the Christmas holidays. Five forecasting models are calculated 

based on the historical sales data and judgmental forecast adjustments: ARIMA, SARIMA, Holt-Winter, 

ARIMA with single judgmental adjustment and ARIMA with collaborative judgmental adjustment. 

These models are considered most appropriate since the moving average and simple exponential 
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smoothing implies that neither seasonal variation nor tendency exists. In addition, the data-series cannot 

be assimilated to a random process, such as random walk, because of the observed seasonality and trend. 

The performance of each forecast is calculated using seven error measures.  

 

Step 3: Determine the criteria on which to evaluate alternatives & calculate solutions per 

alternative 

The DMs select between 5 and 9 criteria on which to evaluate the forecast alternatives. As the result of 

using different error measures may result in diverging measures of accuracy, several different error 

measures are selected as the criteria for the implementation case, which are considered important to the 

evaluation of the forecasts, but which at times may provide conflicting information and must be 

considered simultaneously. These are ME, MAE, MPE, RMSPE, RMSE, MAPE and R2 as can be seen 

in Table 1.  

Several key aspects of these criteria need to be taken into account. First of all, the criteria are for most 

cases incomparable, in the sense that they are not in the same units (for example, RMSPE and MAPE 

are in percentages, and R2 is a ratio and therefore has no unit). An R2 measure of 1.0 can be understood 

in that the regression line perfectly fits the data. Negative values of R2 may occur when fitting non-linear 

trends to data. In seasonal time-series with non-linear trends, we can expect to see negative values of 

R2. 

Secondly, a common point amongst the criteria is that their values should be as close to zero as possible 

for smallest error, except for R2 which should be closest to 1. In this paper, RMSPE and RMSE were 

chosen instead of MSE and MSPE as they use the same units as the original data (as opposed to squared 

units). R2 is a different type altogether as it does not represent a mean computed using errors, but a 

measure of how well future outcomes are likely to be predicted by the model. The solutions of each 

criterion are calculated per alternative forecasting model creating the solution matrix 𝐹, where 𝑓𝑚𝑛 is 

the solution of criterion 𝑛 based on model 𝑚.  
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𝐹 = (
𝑓11 ⋯ 𝑓1𝑛

⋮ ⋱ ⋮
𝑓𝑚1 ⋯ 𝑓𝑚𝑛

) 

The models are determined based on a product’s historical data and other relative qualitative 

information. The historical data should be cleaned of any outliers and the qualitative information 

integrated in a structured manner.  

The Holt-Winter forecasting model is plotted against the actual demand in Figure 3 as the continuous 

grey line. The y axis on Figure 3 is magnified to show values between 1000 and 1700 thousand bags to 

better visualise the variations between the actual results (bars) and the forecasting models (lines). The 

Holt-Winter forecasted line follows the demand seasonality well although with a lower amplitude than 

the actuals. The Holt-Winters method provides a forecast with few outliers shown by the close values 

of the MAE and RMSE, 75.9 and 92.5 respectively, in Table 4. Figure 3 illustrates that this forecast has 

values that are relatively close (both above and below) to the actual results. Table 4 presents the solutions 

of the error measures for each of the alternative forecasts. The error measures in Table 4 quantify these 

discrepancies and show that the ME and MPE (both non-absolute measures) are relatively low at 36.9 

(from a demand of >1200) and 3.27%, respectively. In addition, the R2 measure of 0.61 indicates that 

the fit to the regression is not too low for a time-series presenting strong seasonality. 

The second forecasting method analysed is the ARIMA (5,0,4) method. Figure 3 shows that the ARIMA 

method (dotted line) follows the actual demand relatively well, including the seasonality peaks (albeit 

with a slight delay on the second peak). The fit is better at the beginning of the time-series than at the 

end where there is a more noticeable positive error. The visual analysis is supported by the error 

measures in Table 4, where the ME and MPE are very low (1.33 and 0.51% respectively) suggesting an 

equal distribution of positive and negative errors. The RMSE is marginally larger than the MAE, which 

can explain the larger positive error in the later months. The R2 measure of 0.24 is very low due to the 

high variance of error along the time-series. 
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Figure 3.   Actual sales values (demand) versus Holt-Winter, ARIMA and SARIMA forecasts  

 

The SARIMA forecast, which introduces seasonality to the ARIMA (5,0,4) model, is used as the basis. 

The three parameters representing the orders of the seasonal autoregressive and moving average parts 

of the model are determined by simulating various configurations, using the R programming language 

and free software, to yield the lowest ME and RMSE, which result in (1,1,1). The results for the 

SARIMA (5,0,4)(1,1,1) are illustrated in Figure 3 showing strong adherence to the real data and their 

seasonality.  

As the time-series in this implementation case explicitly show a seasonal character, it was expected that 

SARIMA would provide a better forecast than ARIMA. The forecast initially has some difficulty 

following the curve at the beginning of the 12-month period, followed by a very good fit in the later 

months (June to October) and then another deviation in the final two months of the forecast. The analysis 

of the SARIMA forecast error measures in Table 3 shows a relatively low ME and MPE of 17.50 and 

1.70%, respectively, showing a near-equal positive and negative error distribution. In addition, the 

closeness in the values of MAE and RMSE indicates the absence of outliers.  



18 

 

Table 3.   Evaluation criteria solutions per forecasting model  

 Models 

        

 

Holt- 

Winter 

ARIMA SARIMA Single  

Adjusted 

Collaborative 

Adjusted 

C
ri

te
ri

a 

ME 36.9 1.3 17.5 -52.4 5.6 

MAE 76 112 92 97 33 

RMSE 93 130 107 172 43 

MPE 3.3 % 0.5 % 1.7 % -3.3 % 0.5 % 

RMSPE 7.3 % 9.7 % 8.0 % 11.1 % 3.0 % 

MAPE 5.8 % 8.2 % 6.7 % 6.7 % 2.4 % 

R2 0.61 0.24 0.48 -0.34 0.92 

  

The two judgmentally adjusted forecasts utilize both time-series and qualitative information to 

determine the forecast. The first uses ARIMA(5,0,4) single judgment adjustment in which the expert 

judgment is integrated in a structured manner as complementary information to the ARIMA(5,0,4) 

forecast. The forecasting expert identifies and classifies the events into four adjustment factors: 

transient, transferring, jump or change trend factors, and then attributed a weight to each.  

The first event in Y4 is a special discount offer that will run in January, implying that there will be an 

advancement to January of the expected sales in February and March, thereby increasing the volume in 

January and decreasing volume in February and March. This is identified as a transferring factor. The 

second event relates to technical design changes to the plastic bag so that it meets environmental ISO 

requirements which are estimated to increase the expected demand over several months via new 

customers. This increase is identified as a jump adjustment factor and is applied from February through 

August. The third event in Y4, which is expected to affect the forecast, is the closure of the facilities of 

one of the four major customers in September. The expectation is that the sales will decrease only in 

that month. This is identified as a transient factor and is represented by the dashed line in Figure 4 as 

the large dip in the single judgmentally adjusted forecasting model in September. The final event in Y4 

impacts the full 12 months as it relates directly to the cost of the raw material - plastic - which increases 
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the sales price of the plastic bag and is expected to negatively impact the quantity sold. This event is 

identified as a trend change and results in a monthly decrease in the forecast. 

 

Figure 4: Actual sales versus hybrid forecasting models 

Figure 4 shows that this forecast (dashed line) has a very good fit with the actual data, including month-

over-month trend, seasonality, and peaks except for the under-forecasted value in September (-549). In 

addition, there are very large differences observed between the MAE and RMSE of 97.42 and 171.94, 

respectively (Table 4), which shows the strong impact of the September value. However, as the 

remaining fit is very good, other error measures mitigate the outlier’s impact. The R2 measure is negative 

which occurs when the fit of the forecasted line is worse than just fitting a horizontal line. This is due to 

the extreme September value and thus the non-linear error trend.  

The second judgmentally adjusted forecast utilizes the collaborative expert judgment of several people 

and is based on ARIMA(5,0,4). The method for the collaborative judgmentally adjusted forecast builds 

upon the single judgmentally adjusted forecast presented previously by using the expert opinion of three 

experts instead of only one. The process is comprised of four parts: first, mathematical forecasts are 

created based on cleaned data (done in section 4.2), then factors are identified and classified using the 

forecasters’ knowledge related to future events. Third, the different information collected is integrated 
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into a fuzzy inference engine to obtain a global fuzzy judgment. One of the major differences with the 

single judgmentally adjusted forecasting model is the adjustment for September due to the closure of 

one of the company’s major customers. The single expert believed that the volume would decrease by 

the customer’s monthly purchase quantity. However according to the team of three experts, that 

customer will order almost double their monthly volume to replenish their stock. Another observed 

difference between the two judgmentally adjusted forecasting models is in January based on the special 

discount offer that is expected to advance expected sales from February and March to January. This was 

also the case in the collaborative judgmentally adjusted forecast. However, the volume advanced from 

February and March to January is 34% less than in the case of the single judgmentally adjusted forecast. 

Both the ME and MPE are small showing a quasi-equal distribution of positive and negative errors in 

Table 4, and the MAE and RMSE are also very low due to the impact of the two small peak errors in 

March and July. The R2 measure of 0.92 shows that there is an extremely good fit between forecast and 

data; there is very little difference in the error trend along the time-series. 

 

Step 4: Determine interdependencies between criteria, prioritisation through pairwise 

comparisons, weighting and normalisation 

The criteria are evaluated by calculating their weights in terms of priority, initially disregarding the 

interdependencies between the criteria. Accordingly, a pairwise comparison matrix is formed (A) using 

an “expert” judgment, on the basis of Saaty’s Fundamental 1-9 scale which classifies the relative 

importance of one criterion over another (Saaty, 1990). The normalised weight vector (w) is then 

obtained by determining the maximum eigenvalue 𝜆𝑚𝑎𝑥 of the comparison matrix (A) and finding the 

solution to the equation below. 

𝐴𝑤 =  𝜆𝑚𝑎𝑥𝑤 

In the implementation case, the DMs compare the interdependent criteria pairwise to firstly prioritise 

the criteria based on the amount of useful information conveyed (for example, for ME where positive 
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errors can counteract negative errors, priorities in comparison to other error measures are very low). 

RMSE has a little higher overall priority to MAE due to its use in identifying the presence of outliers 

(square power). The team then compares them to determine by how much more one criterion is more 

important than another using Saaty’s 1-9 scale (Saaty, 1990) shown in Table 4. The weights and 

importance corresponding to each criterion depend on the chosen MCDM method. At the end of pairwise 

comparisons, we obtain a normalised weight vector w by calculating the eigenvectors of the priority 

matrix.  

Table 4. Criteria priorities and weights 

Criteria ME MAE RMSE MPE RMSPE MAPE R2 Weight (w) 

ME 1 1/5 1/4 1/3 1/5 1/5 1 0.046 

MAE 5 1 1/3 1 1/3 1/3 1 0.098 

RMSE 4 3 1 3 1 1/3 1 0.167 

MPE 3 1 0 1 1/3 1/5 1 0.080 

RMSPE 5 3 1 3 1 1/3 1 0.173 

MAPE 5 3 3 5 3 1 1 0.308 

R2 1 1 1 1 1 1 1 0.129 

 

The consistency ratio is calculated to determine the consistency in the expert judgments by comparing 

the consistency index (CI) to the Random Consistency Index (RI) and should be less than 10% (Saaty, 

2001):  

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
     𝐶𝑅 =

𝐶𝐼

𝑅𝐼
 

 The CR for this case is 0.0935, and is therefore considered acceptable as it is < 0.1 (Saaty, 2001).  

CI generally increases as the number of alternatives increases (S. Han, 2016) and a method was 

developed in Ergu et al. (2011) identifying the inconsistent elements in a pairwise comparison matrix 

with the objective of improving the CR.  

In order to determine the impact of the criteria on each other, the network of influences among the 

criteria is established through the pairwise comparisons of each criterion from the perspective of the 

control criterion. To illustrate how to integrate the interdependence into the criteria weightings, let us 
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consider n criteria named B1 to Bn. Firstly, the dependence among each criterion with respect to itself 

must be determined. Does B1 depend on B2? Vice-versa, does B2 depend on B1? Continuing all the way 

to Bn. If, for example, there are x numbers of dependencies, the pairwise comparison matrices are 

determined for the impacted criteria with respect to the control criteria, A, and the normalized 

eigenvectors are calculated for these and placed in the columns of a supermatrix for network (B). The 

criteria which are not dependent on any others use the values of the pairwise comparison matrix A. 

𝐵 =  (
𝐵11 ⋯ 𝐵1𝑛

⋮ ⋱ ⋮
𝐵𝑛1 ⋯ 𝐵𝑛𝑛

)    

B is subsequently multiplied by the weight vector w to determine the normalised weight vector, 𝜔𝐴𝑁𝑃, 

of the criteria including interdependence.  

 𝜔𝐴𝑁𝑃 =  (
𝐵11 ⋯ 𝐵1𝑛

⋮ ⋱ ⋮
𝐵𝑛1 ⋯ 𝐵𝑛𝑛

) ×  (

𝑤1

⋮
𝑤𝑛

)   = (

𝜔1

⋮
𝜔𝑛

)        

ANP allows for a structured methodology of criteria identification, prioritisation and weighting based 

on expert judgment. The ranking of the alternative solutions uses the second part of the hybrid MCDM 

model, TOPSIS.  

In the implementation case, all the error measures except R2 are dependent on each other simply because 

of their calculation method. Their interdependencies are illustrated in Figure 5.  

 

Figure 5: Interdependencies between MCDM criteria 
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Both ME and MAE have an impact on RMSE, as squaring the error removes any negative, and the 

RMSE is in the same units as ME and data. Due to the way the error measures are calculated, the 

difference between MAE and RMSE will highlight the presence of outliers. MAPE is dependent both 

on MAE and MPE equally as it is calculated using both the absolute value of errors and the percentage 

of total demand. Additionally, MPE and RMSE both influence RMSPE as it is comprised of the squared 

error aspect as well as showing a unit-less percentage of total demand. One thing to note is that MAE 

for example influences the RMSPE indirectly through RMSE.   

Local priorities result from the eigenvectors of the priority matrix in Table 4. The supermatrix of the 

network is calculated in Table 5 with the normalised eigenvectors calculated for each criterion in the 

columns. The final column is the normalised weight vector  𝜔𝐴𝑁𝑃  determined by multiplying the 

supermatrix with the priority weight vector w. 

Table 5. Normalised interdependences and weights (ANP-TOPSIS) 

Criteria ME MAE RMSE MPE RMSPE MAPE R2 Weight (𝝎𝑨𝑵𝑷) 

ME 1 0 0.106 0 0 0 0 0.064 

MAE 0 1 0.100 0 0 0 0 0.184 

RMSE 0 0 0.745 0 0.138 0 0 0.148 

MPE 0 0 0 1 0.172 0.200 0 0.171 

RMSPE 0 0 0 0 0.690 0 0 0.119 

MAPE 0 0 0 0 0 0.600 0 0.185 

R2 0 0 0 0 0 0 1 0.129 

 

Step 5: determine TOPSIS decision matrix & calculate distances to ideal solutions and rank 

TOPSIS allows for the evaluation of the forecasting models compared to each other based on the criteria 

weightings calculated by the ANP process in steps 3 and 4. Firstly, the decision matrix rmn is determined 

normalising the solutions matrix, F, and multiplying it with the ANP weight vector 𝜔𝐴𝑁𝑃.  

𝑟𝑚𝑛 =  
𝑓𝑚𝑛

√𝑓𝑚𝑛
2

 ×  𝜔𝐴𝑁𝑃 
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A decision matrix for the ranking of five alternatives in the implementation case is created on the basis 

of the criteria per alternative. The decision table is then normalised to allow for comparisons between 

values, shown in Table 6. It is worth noting that the absolute values of the normalised decision values 

for the cost-based criteria are taken to determine the positive and negative ideal solution vectors as these 

error measures also represent bias in the forecast results versus the actual. The “best” value is that which 

is closest to zero rather than the smallest. For example, in the case of ME, the worst value is the single 

judgmentally adjusted forecast even though it is the lowest on a numerical scale. However, it is the value 

farthest from zero which represents the highest error. This step is not necessary for R2 as it does not 

consider a meaningful zero value. 

Table 6. Normalised decision matrix ANP-TOPSIS 

 
Holt-Winter ARIMA SARIMA Single  

Adjustment 

Collaborative  

Adjustment 

ME 0.036 0.001 0.017 -0.050 0.005 

MAE 0.072 0.107 0.087 0.093 0.032 

RMSE 0.052 0.073 0.061 0.097 0.024 

MPE 0.112 0.018 0.058 -0.113 0.016 

RMSPE 0.047 0.063 0.051 0.071 0.020 

MAPE 0.076 0.108 0.088 0.088 0.031 

R2 0.062 0.024 0.049 -0.035 0.093 

 

The decision matrix rmn is used to determine the positive-ideal and negative-ideal solutions. It then 

calculates each alternative’s distance to them and establishes a ranking based on these distances. To 

establish the positive-ideal solution vector (noted V+) and the negative-ideal solution vector (noted V-

), the minimum value is determined from the alternatives for each criterion. Therefore, the maximum 

value for V- is determined for each criterion.  

Subsequently the separation measures are calculated using the Euclidian distance. The separation of 

each alternative from the positive-ideal V+ is noted D+. Similarly, the separation of each alternative 

from the negative-ideal solution V- is noted D-.  
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                          𝐷𝑚
+ = √∑ (𝑟𝑚𝑛 − 𝑉𝑛

+)2

𝑛
                           

𝐷𝑚
− = √∑ (𝑟𝑚𝑛 − 𝑉𝑛

−)2

𝑛
 

The relative closeness to the ideal solution is calculated as 𝐶𝑚 and the performance order is ranked.  

𝐶𝑚 =
𝐷𝑚

−

𝐷𝑚
− + 𝐷𝑚

+  

A larger index value means that the performance of the alternative is better. 

In the implementation case, to establish the positive-ideal solution vector (noted V+) we determine 

which value is the minimum for the cost-based criteria in which a value closer to zero in error results is 

considered as better (ME, MAE, RMSE, MPE, RMSPE, MAPE) and the maximum for benefit criteria, 

which favours a higher solution as in the case of R2. Inversely, to establish the negative-ideal solution 

vector (V-), the maximum values for the cost-based criteria are selected and the minimum for the benefit 

criteria. Table 7 shows the positive and negative ideal solutions. Note that the negative ideal solution 

for ME and MPE are the results of the single judgmentally adjusted forecast from the normalised 

decision matrix (Table 6) but with opposite sign. This is because they are the values which are farthest 

from the ideal solution of 0. The same is not true for R2 as the ideal solution is 1, as R2 does not have a 

meaningful zero.  

Table 7. Positive-ideal (V+) and negative-ideal (V-) solutions for ANP-TOPSIS 

Criteria V+ V- 

ME 0.001 0.050 

MAE 0.032 0.107 

RMSE 0.024 0.097 

MPE 0.016 0.113 

RMSPE 0.020 0.071 

MAPE 0.031 0.108 

R2 0.093 -0.035 
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The relative closeness, C, is calculated based on the relative distances, D+ and D-, from the positive 

and negative ideal solutions, V+ and V-, in Table 8 and equations from section 3.5. Results can be seen 

in Table 8 in order of the closest model for the ideal solution to farthest and the respective ranking. The 

forecast selected using the ANP-TOPSIS approach is the collaborative judgmentally adjusted model, 

with a much greater relative closeness to the ideal solution, C, than all the other alternatives based on 

error measures as the evaluation criteria. The least desirable forecasting model is the single judgmentally 

adjusted forecast with an extremely low relative closeness to the ideal solution. The SARIMA and Holt-

Winter models both integrate seasonality into their parameterisation which is one of the initial 

observations made on the historical data. Both of these models are ranked higher than ARIMA, which 

ignores the seasonal component, although by very little: a difference of 0.042 and 0.015. This leads us 

to believe that the judgmental adjustment of a forecast can either make or break the forecast and that a 

collaborative approach is the best method.  

 

Table 8. Distances and final ranking (ANP-TOPSIS) 

 Relative Closeness C Rank 

Collaborative Adjustment  0.982 1 

SARIMA 0.508 2 

Holt-Winter 0.481 3 

ARIMA 0.466 4 

Single Adjustment 0.099 5 

 

 

3.1 Effect of interdependence between evaluation criteria 

In order to validate the final ranking of the implementation case results and to determine whether the 

initial assumption of interdependence between variables is sound, the process is repeated omitting the 

interdependencies. Instead of using the weight vector including interdependence, 𝜔𝐴𝑁𝑃, the priority 

weight vector w is used to determine the normalised decision matrix 𝑟𝑚𝑛. 
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By ignoring the interdependence, the model alters the weight vector by 39%, based on the absolute 

values of the differences (Table 9). The most notable difference is the increase in the weight attributed 

to the MAPE and the decrease in MAE and MPE, which partly explains the different ranking of ARIMA 

and Holt-Winter between ANP-TOPSIS with and without considering interdependence between criteria 

in Table 10. No difference is observed in R2 as it does not depend on the results of the other criteria and 

measures how close the forecasted values are to the fitted regression line.  

 

Table 9. Comparison of weight vectors with (𝝎𝑨𝑵𝑷) and without (w) interdependence between 

criteria  

Criteria 𝝎𝑨𝑵𝑷 w 

% increase by 

omitting 

interdependence 

Absolute difference 

ME 0.064 0.046 -28% 0.018 

MAE 0.184 0.098 -47% 0.086 

RMSE 0.148 0.167 13% 0.019 

MPE 0.171 0.080 -53% 0.091 

RMSPE 0.119 0.173 45% 0.054 

MAPE 0.185 0.308 67% 0.123 

R2 0.129 0.129 0% 0.000 

 

The positive and negative ideal solutions are calculated in the same way. They are used to calculate the 

relative closeness and determine the ranking of alternative forecasts. The relative closeness and ranking 

of the results omitting the interdependence between criteria are shown in Table 10 against that of ANP-

TOPSIS. The only change in the ranking is between SARIMA and the Holt-Winter models due to minor 

changes in their relative closeness’s to the ideal solution. The relative closeness of SARIMA decreases 

by 0.046 and increases by 0.054 for the Holt-Winter model. These small changes are sufficient to swap 

the ranking of the two models as they were very close to begin with. 

The ARIMA model remains ranked second last when omitting interdependence but is displaced farther 

from the ideal solution, losing 0.13 in relative closeness. On the other hand, the single judgmentally 
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adjusted forecast comes closer to the ideal solution when ignoring the interdependencies between 

criteria. 

 

Table 10. Relative closeness to ideal solution and final ranking with and without inter-

dependence between criteria 

 
Including interdependence between 

evaluation criteria 

Omitting interdependence between 

evaluation criteria 

RANK 

Relative  

Closeness 

C 

Ranking of 

alternatives 

Relative  

Closeness 

C 

Ranking of 

alternatives 

1 0.982 Collaborative Adjustment 0.987 Collaborative Adjustment 

2 0.508 SARIMA 0.534 Holt-Winter 

3 0.481 Holt-Winter 0.462 SARIMA 

4 0.466 ARIMA 0.336 ARIMA 

5 0.099 Single Adjustment 0.142 Single Adjustment 

 

3.2 Sensitivity Analysis 

To analyse the quality of the methodology in demand forecast selection, a sensitivity analysis is 

conducted to determine the effect of the criteria weighting on the final ranking of results. Therefore, 

experiments are run in which the weighting of one criterion is increased by 50% and the weighting of 

the remaining criteria is reduced proportionally. Table 11 shows the ranking based on the relative 

closeness of the alternatives for seven scenarios. Each scenario represents the ranking results when the 

weight of one specified criterion is increased by 50% and the weight of the other criteria is decreased 

proportionally so that the sum of the normalised weights equals 1. This is done for seven scenarios based 

on the seven criteria. In every case, the collaborative judgmentally adjusted forecasting model is always 

selected first with the largest relative closeness to the ideal solution, and the single judgmentally adjusted 

forecast is always the least favourable. This is in line with the original results and indicates that the 

forecast selection process is robust when selecting the best forecast out of a set of alternatives.  
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On the other hand, the ranking of the purely statistical models, ARIMA, SARIMA and Holt-Winter 

switch between each other. The most obvious is Scenario 4, where the ranking of ARIMA is better than 

the other two, and Scenario 1, where ARIMA outranks the Holt-Winter model. This is expected since 

the solutions for the ME and MPE of ARIMA are the best out of the five alternatives for ME and second 

best after the collaborative judgmentally adjusted forecast for MPE (Table 3). Scenario 3 and 5 have the 

same ranking results as those of the original results. 

 

3.3 Statistical Significance Test of Predictive Accuracy  

The Kolmogorov-Smirnov Predictive Accuracy (KSPA) test from (Hassani and Silva, 2015) is 

performed on the errors the two most highly ranked forecasting models: the Collaborative adjusted and 

SARIMA forecasting models, in order to determine whether there is a statistical significance between 

their distributions. Firstly, the absolute forecast error is calculated and squared for the 12-month 

forecasting period from January to December in Y4 which is used in the two-sample two-sided and one-

sided KSPA test. The two-sided KSPA test of the errors of the two models yield a P-value of 0.0337 

which is less than 0.05, thus supporting the rejection of the null hypothesis and confirming that there is 

indeed a statistical significance between the errors of the two forecasting models. The one-sided KSPA 

tests whether the forecast with the lowest error also has a stochastically smaller error than the other 

forecasting model thereby testing whether there is a statistical significance between the forecasts 

(Hassani and Silva, 2015). The one-sided test yields a P-value of 0.01685, also less than 0.05, and 

confirms that the Collaborative adjusted forecasting model does provide a forecast with a lower 

stochastic error than SARIMA.  

 

 

Table 11. Ranking based on relative closeness of the alternatives to the ideal solution based on 

an increase in each individual criterion 
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Scenario 1 

(ME 

+50%) 

Scenario 

2 

(MAE 

+50%) 

Scenario 

3 

(RMSE 

+50%) 

Scenario 

4 

(MPE 

+50%) 

Scenario 

5 

(RMSPE 

+50%) 

Scenario 

6 

(MAPE 

+50%) 

Scenario 

7 

(R2+50%) 

Collabora

tive 

Adjustme

nt 

1 1 1 1 1 1 1 

SARIMA 2 3 2 3 2 3 3 

Holt-

Winter 
4 2 3 4 3 2 2 

ARIMA 3 4 4 2 4 4 4 

Single 

Adjustme

nt 

5 5 5 5 5 5 5 

 

The results of the sensitivity analysis show that in all cases, the model selected to forecast the 

polyethylene bag demand is the collaborative judgmentally adjusted model. 

4 Discussion and Managerial Insights 

This section presents additional discussion points regarding the implementation case results. The results 

from the implementation case consistently rank the collaborative judgmentally adjusted forecasting 

model as the best model by a large margin (relative closeness to the ideal solution) which supports the 

findings in (Cheikhrouhou et al., 2011) in which collaborative judgmentally adjusted forecasting models 

outperform single adjusted. Conversely, the approach also consistently ranks the single judgmentally 

adjusted forecasting model last, worse than ARIMA, which differs from the results in (Marmier & 

Cheikhrouhou, 2010) that select the single judgmentally adjusted forecasting model over ARIMA due 

to the better performance in MAE and MAPE. However, the ANP-TOPSIS approach uses several error 

measures for evaluation and integrates the experts’ opinions into the weighting of importance for each 

criterion, which results in ARIMA ranking higher than the single judgmentally adjusted forecasting 

model.  
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The collaborative judgmentally adjusted forecast is followed by SARIMA and the Holt-Winter models 

which both take seasonality into consideration in the model parameters. This may seem obvious when 

reviewing the seasonal nature of the historical data. 

The effect of excluding the interdependence of the criteria is determined by comparing the results of the 

relative closeness and ranking the alternatives with and without the inclusion of interdependence 

between error measures. The final ranking of alternatives does not largely differ when ignoring the 

interdependence between criteria indicating that the difference in the criteria weight vectors, as a result 

of the interdependence, does not have a large impact on the selected model.  

The results in Table 11 show that the pure time-series autoregressive models, ARIMA and SARIMA, 

both decrease in relative closeness to the ideal solution when interdependence between criteria is 

ignored. Conversely, the exponential smoothing model, Holt-Winter, increases in relative closeness to 

the ideal solution. In addition, both judgmentally adjusted forecasts increase in their relative closeness; 

the single judgmentally adjusted forecast more so than the collaborative approach (0.043 and 0.005 

respectively). This is most likely due to the weights attributed to the criteria.  

The results from the sensitivity analysis validate the robustness of the selected model, consistently 

selecting the collaborative judgmentally adjusted forecast as the highest ranked model. Including the 

consolidated judgment from more than one expert is an integral part of obtaining a good forecast. The 

sensitivity analysis also consistently results in the single judgmentally adjusted forecasting model being 

the worst model. The only changes in the rankings were between the purely statistical models ARIMA, 

SARIMA and Holt-Winter models which show greater sensitivity to the criteria weights. However, this 

is probably due to the fact that there is a minor difference in the relative closeness to the ideal solution 

to begin with (Table 8) and not necessarily because they were sensitive.  

Even though the ANP-TOPSIS process is highly subjective and founded in human judgment, there were 

some additional manual manipulations required in the implementation case to calculate the positive and 

negative ideal solutions (V+ and V-) for the ME and MPE. This is because the MCDM method does not 
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consider a meaningful zero and these values were below zero. In this case, the distance from zero is used 

as a measure to determine the absolute values of the errors. In this implementation case, it is only valid 

for the single judgmentally adjusted forecasting model for ME and MPE where their negative values 

show a conservative bias of under-forecasting the demand. Therefore, it is recommended that experts 

carefully analyse the results when there is a criterion that includes a non-arbitrary zero point.   

The ANP-TOPSIS approach makes it possible to structure the issue into a network of criteria and 

alternatives, takes into account the interdependence of the evaluation criteria, allows a trade-off of poor 

results with good results due to its compensatory nature, and can compare the performance of forecasting 

models of different classes. 

 

4.1 Managerial Insights 

The plastic bag manufacturer had difficulty in selecting a forecasting model based solely on the results 

of the error measures they consistently used: ME and MAPE, which in the implementation case yield 

conflicting results. The results of the ME suggested the ARIMA model should be selected and the MAPE 

implied the collaborative judgmentally adjusted forecasting model should be selected. The error 

measurements also highlight the importance of considering a larger set of error measures as the 

evaluation criteria. The proposed ANP-TOPSIS approach provides the possibility to reduce the risk in 

selecting a forecasting model by considering several error measures simultaneously and can support the 

management team of the plastic bag manufacturer to select a new forecasting model, even in the case of 

conflicting error measurements. They historically used ARIMA to forecast future sales of all of their 

products, evaluating the forecast’s performance using the ME and MAPE however the final results rank 

the collaborative judgmentally adjusted forecasting model as the best model. Consequently, these results 

support the justification for the change management necessary to implement a more structured 

forecasting process that includes a team of experts who adjust the forecast based on their knowledge of 

future events. Furthermore, using the ANP-TOPSIS approach to evaluate the alternative models enables 
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the company to avoid selecting the incorrect forecast, particularly in the case of the comparison between 

the single judgementally adjusted forecasting model and ARIMA. If only the MAE and MAPE were 

considered in evaluating these forecasts, the experts would have selected the single judgementally 

adjusted forecasting model over ARIMA, however by using additional error measures and weighting 

the evaluation criteria based on subjective sense of comparative importance, the ARIMA model was 

higher ranked in all cases.  

Another beneficial impact of using the collaborative judgmentally adjusted forecast instead of ARIMA, 

is avoiding the potential loss of sales due to the frequent under-forecasting of the ARIMA model. This 

is not quantifiable as it depends on periodic decision making by the production and inventory planners 

that determine the level of inventory using a min-max system, based on inventory targets and actual 

sales of the previous month.  

The selection of the best forecasting model amongst alternatives may also improve the budgeting cycle 

conducted at the end of every year for the following year by harmonising the bottom-up sales forecasting 

model with the top-down sales targets. 

Conversely, the ANP-TOPSIS process should be facilitated by a knowledgeable person, which could be 

trained with regards to the approach to use in order to repeat it when deemed necessary, for example, on 

a yearly basis.   

5 Conclusion  

This paper presents an approach that can be a useful tool in industries to choose from several demand 

forecasting models of different classes.  Using the ANP-TOPSIS approach presented in this paper, these 

companies are able to determine which forecasting model they should select using a set of error measures 

as evaluation criteria. The scientific contribution of the approach is that it allows the comparative 

evaluation of forecasting models of different classes using several interdependent error measures and 
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shows that the use of this approach can help avoid the selection of an inappropriate or ‘worse’ forecasting 

model. 

The methodology was demonstrated using an implementation case of a plastic bag manufacturer. Five 

forecasting models of different classes were evaluated with seven error measures. The results showed 

conflicting results particularly between the ME, MAE and the MAPE. The ANP-TOPSIS approach 

enabled ranking of the alternative forecasting models taking into consideration all seven error measures 

as well as the interdependence between them. The interdependence between error measures showed to 

have an impact on the relative closeness to the ideal solution and therefore should be considered when 

evaluating alternative forecasting models using error measures. Nevertheless, the collaborative 

judgmentally adjusted forecasting model was consistently ranked first for the implementation case as 

demonstrated by means of a sensitivity analysis. Additionally, a KS predictive accuracy test confirmed 

the statistical significance of the errors between the collaborative judgmentally adjusted forecasting 

model and the second highest ranked model, SARIMA. The ANP-TOPSIS approach allowed the 

avoidance of selecting the inappropriate model; between the single judgmentally adjusted forecasting 

model and ARIMA, which show opposing results in MAE and MAPE versus the other measures. By 

considering all seven error measures and their interdependencies, the single judgmentally adjusted 

forecasting model is ranked as the worst model out of the alternatives. 

A limitation was observed during the implementation case: the MAPE has a meaningful zero where the 

best solution is not simply the smallest value, but rather that which is closest to zero. This required a 

manual manipulation for calculating the minimum and maximum distances to the ideal solution. 

Therefore, this approach should be used in conjunction with a critical perspective when calculating the 

TOPSIS part of the approach. Another limitation is the subjective weighting by experts of the evaluation 

criteria. It is not so intuitive to weight error measures using Saaty’s scale in a business concept as it may 

be influenced by several factors, such as the knowledge of the expert themselves and what they are 

accustomed to using or the level of clarity when it comes to the strategy of the company with regards to 



35 

 

forecasting accuracy and inventory. Therefore, it is recommended that future research should look into 

how to manage uncertainty in the weighting of the evaluation criteria.  

It would also be interesting to see how qualitative evaluation criteria, such as the expertise required for 

a particular forecasting model, could be combined with the quantitative criteria of error measures. 

Another future direction is to investigate the impact of the implicit biases of the experts involved in 

weighting the evaluation criteria as they might favour a forecasting model that requires less expertise or 

effort, and weight it higher than the accuracy criteria favoured by the company’s strategy.  
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