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Abstract

Purpose — Big data is relevant to the supply chain, as it provides analytics tools for decision-making and
business intelligence. Supply Chain 4.0 and big data are necessary for organisations to handle volatile, dynamic
and global value networks. This paper aims to investigate the mediating role of “big data analytics” between
Supply Chain 4.0 business performance and nine performance factors.
Design/methodology/approach — A two-stage hybrid model of statistical analysis and artificial neural
network analysis is used for analysing the data. Data gathered from 321 responses from 40 Indian
manufacturing organisations are collected for the analysis.
Findings — Statistical analysis results show that performance factors of organisational and top management,
sustainable procurement and sourcing, environmental, information and product delivery, operational,
technical and knowledge, and collaborative planning have a significant effect on big data adoption.
Furthermore, the results were given to the artificial neural network model as input and results show
“information and product delivery” and “sustainable procurement and sourcing” as the two most vital
predictors of big data adoption.
Research limitations/implications — This study confirms the mediating role of big data for Supply Chain
4.0 in manufacturing organisations of developing countries. This study guides to formulate management
policies and organisation vision about big data analytics.
Originality/value — For the first time, the impact of big data on Supply Chain 4.0 is discussed in the context of
Indian manufacturing organisations. The proposed hybrid model intends to evaluate the mediating role of big
I ‘ data analytics to enhance Supply Chain 4.0 business performance.
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aspects in SC operations is a much-discussed topic in the existing literature (Inamdar et al,
2020). The term “SC data science” was used for the application of qualitative and quantitative
methods to SC theory to solve SC problems and prediction of outcomes (Waller and Fawecett,
2013). However, with business processes now becoming more data-dependent, BDA provides
data-derived insights for operative decision-making (Ramanathan et al, 2017). BDA in SC
results in improving the process-level performance (Brinch, 2018), firm-level performance
(Dubey et al., 2019a), visibility (Kache and Seuring, 2017), competitiveness (Sanders, 2016) and
return management (RoBmann et al, 2018). With BDA capabilities, organisations can handle
market turbulence (Gunasekaran ef al, 2018) and thus have a competitive edge over
competitors (Dubey ef al., 2021). Supply Chain 4.0 or smart SC is an initiative of using
Industry 4.0/smart manufacturing in SC operations (Frazzon et al, 2019). Characteristics of
Supply Chain 4.0 includes an interconnectedness between SC and technology, namely via
smart objects instrumented with sensors and RFID, intelligent systems, integrated SC
activities, automated activities and innovation (Wu ef al, 2016). Supply Chain 4.0 offers
virtualisation, interoperability, service orientation, decentralisation and modularity (Dossou,
2018). Furthermore, the recent outbreak of COVID-19 has impacted many economic activities
such as manufacturing, healthcare, sports, tourism, supply chain and logistics (Ivanov,
2020a). This disruption could be felt in almost all sectors, and a significant mismatch has been
observed between demand and supply. Under such circumstances, big data is set to play a
crucial role and the appropriate application of data analytics can help bring supply chain
operations into a new normalcy. With the change of consumption pattern in COVID-19 crises,
BDA could be used for demand forecasting (Ivanov, 2020b) and supply chain planning
(Chang, 2020). BDA has the ability to identify disruption and other supply chain issues, and
this information could be used for better decision-making and management of various supply
chain activities. Thus, the appropriate application of BDA capabilities may help in building a
resilient supply chain (Singh and Singh, 2019). Even though BDA is one of the supporting
technologies, along with the Internet of Things (IoT) and cloud computing, for Supply Chain
4.0, its role is crucial for business performance (Hazen et al, 2018). However, the negative
impacts of BDA include the inadequacy of IT infrastructure, coordination issues between
partners, complexity and cyber-risks (Makris et al, 2019; Kache, 2015). Luthra and Mangla
(2018) categorised Supply Chain 4.0 challenges into four categories: technological, strategic,
ethical and legal, and organisational. The study conducted by Moktadir et al (2019) for
leather manufacturers in Bangladesh identified technical infrastructure and reconfiguration
complexity as significant challenges of Supply Chain 4.0. BDA capabilities can transform the
Supply Chain 4.0 initiative in developing economies provided these challenges are addressed.
Many companies require managing multiple SC, partnering with multinationals, customers
and suppliers in various tiers (Min et al., 2019). Consequently, these companies have increased
pressure for BDA to manage the SC (Sander, 2016).

Industrialised countries such as China, Denmark, the USA and Germany have started
using BDA in SC management (Brinch et al., 2018; Kache and Seuring, 2017; Lai et al., 2018)
and the application of Supply Chain 4.0 (Ivanov et al., 2019; Makris et al, 2019). The current
literature shows a positive impact of BDA on SC agility (Dubey et al., 2019a), SC resilience
(Dubey et al, 2019b), SC sustainability (Cheng et al., 2018) and SC innovation (Queiroz and
Telles, 2018). However, BDA for SC and Supply Chain 4.0 are discussed separately, and the
contributions of BDA for Supply Chain 4.0 business performance are rarely discussed. This
study attempts to bridge this research gaps in the context of developing countries. The
research questions (RQs) addressed by the study are as follows:

RQI. What are the significant factors for BDA in SC and Supply Chain 4.0?

RQ2 How do these factors impact the initiative of Supply Chain 4.0 for developing
economies?
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RQ3. Does BDA play the role of mediator to improve Supply Chain 4.0 performance?

To address the above RQs, the literature on “Supply Chain 4.0”, “big data analytics”,
“Industry 4.0 and supply chain” was reviewed. Based on the literature survey and experts’
opinions, factors and sub-factors are explored. This study employs a two-step hybrid
structural equation modelling (SEM) and artificial neural network (ANN) approach to
determine the influence of BDA on business performance. The SEM approach is
compensatory and used to verify the linear relationship (Shah and Goldstein, 2006). ANN
is non-compensatory and used to verify the linear as well as non-linear relationships. Thus,
ANN balances limitations of SEM (Shmueli and Koppius, 2011) and is more progressive
compared to multiple linear regression approaches (Chong, 2013).
The research objectives (ROs) of the study are as follows:

ROI1. To identify the critical enablers of BDA adoption in Supply Chain 4.0.

RO2 To evaluate observable and unobservable BDA constructs and rank the most
significant factors using ANN.

RO3. To determine the effect of these factors to improve SC business performance.

The manuscript is structured in sections as follows: Section 2 is the theoretical background of
the study. Section 3 elaborates on the proposed hypothesis and framework, followed by
research methodology in Section 4. The analysis and discussion of the findings are presented
in Section 5. Section 6 consists of the conclusion and future outlook of the study.

2. Theoretical background

In the literature, authors have employed various models and theories to understand the
adoption of technology advancement. These include “technology acceptance model (TAM),
unified theory of acceptance and use of technology (UTAUT), theory of planned behaviour
(TPB), technology readiness index (TRI), organisation information processing theory (OIPT),
stakeholder theory and contingency theory” etc. In this paper, we utilise OIPT to study the
relevant literature of BDA in the supply chain domain. OIPT was developed by Galbraith
(1974), which constitutes three basic elements: requirement of processing, capability of
processing and the match between these two elements (Tushman and Nadler, 1978; Zhu et al,
2018). OIPT supports the organisation in better decision-making while minimising
uncertainty by preparing strategies for processing information based on the organisation’s
technological capabilities (Galbraith, 1974; Tushman and Nadler, 1978). In simple terms, an
organisation needs large amounts of data to support various processes in decision-making
but has limited processing capability (Zhu et al,, 2018). BDA can solve this issue and can be a
viable option even within the context of the COVID-19 crisis. In this way, uncertainty in the
supply chain can also be mitigated through a proper application of BDA at the organisational
level. Therefore, OIPT motivate to use information technology such as BDA to develop
insights to fulfil the requirement of data for Supply Chain 4.0. To clarify, we first explain
Industry 4.0 and Supply Chain 4.0, followed by the application of BDA in the SC. Lastly, we
illustrate the relationship between BDA and Supply Chain 4.0.

2.1 Industry 4.0 and Supply Chain 4.0

Industry 4.0 is defined as the fourth industrial revolution. Industry 4.0 is mostly technology-
driven and has cyber-physical systems (CPS) as its core constituents. A CPS integrates
network and physical processes as control and monitoring mechanisms (Lee ef al, 2015).
Industry 4.0 transforms technologies into digitalisation, automation, etc. (Lasi ef al, 2014).
The various techniques of Industry 4.0 are the Internet of Things (IoT), cloud computing,



augmented reality, additive manufacturing, robotics, cybersecurity, BDA, simulation, and
horizontal and vertical integration (Frank et al, 2019). According to Lu (2017), Industry 4.0 is
popularly used to make innovative tools and machines, real-time assets tracking, and
machine maintenance within the aerospace industry, health care industry, furniture
manufacturing industry and the agriculture industry, to name a few. Industry 4.0 is used in
the SC to make its processes more efficient and also helps to increase its productivity (Raut
et al., 2020). This supply chain is commonly referred to as Supply Chain 4.0.

Supply Chain 4.0 is beneficial to all stakeholders of the SC, including the supplier,
manufacturer, distributor and customer. This technology advancement offers the following
benefits to stakeholders: 1) Supplier— supplier and capacity flexibility (Oh and Jeong, 2019),
supplier selection (Frank et al,, 2019), supplier collaboration (Manavalan and Jayakrishna,
2019), controlling lead time (Oh and Jeong, 2019) and market dynamics (Ardito et al.,, 2019).
2) Manufacturer —transparency (Lin et al., 2016), flexibility (Pfohl e al, 2017), innovation (Lin
et al., 2016), digitalisation and automation (Ivanov et al, 2019) and lean production (Lin et al,
2016). 3) Distributor — reduced delivery time (Pfohl et al., 2017), logistics flexibility (Oh and
Jeong, 2019) and lean practices (Lin ef al, 2016) 4) Customer — Accessibility of product
(Frazzon et al., 2019), increase in interaction (Oh and Jeong, 2019), customisation (Oh and
Jeong, 2019) and channel flexibility (Oh and Jeong, 2019). Makris et al (2019) conducted an
explorative study on adoption to Supply Chain 4.0 and found that adoption will influence
employees, working hours and flexibility. However, the adoption of Supply Chain 4.0 still
faces specific challenges. Moktadir et al (2019) and Luthra and Mangla (2018) identified
challenges in the emerging and developing economies showing that all types of economies are
considering the adoption of Supply Chain 4.0. Some industrialised countries such as
Germany, France, the UK or the USA have adopted Supply Chain 4.0. Moreover, developing
economies such as India, Iran and Brazil, and emerging economies such as Bangladesh are
also catching up to this technological advancement.

2.2 BDA and the supply chain

BDA is one of the forces, which may form future SC (Fawcett and Waller, 2014). Nguyen et al.
(2018) argued that BDA capabilities could be useful for demand management, logistics,
procurement and manufacturing functions of SC. In addition, to leverage the fusion of big
data in SC analytics, Woldt et al. (2020) found that there exist several job opportunities in this
domain. They mapped the course structure incorporating big data and SC analytics based on
industry data and a literature review, which resulted in 116 types of SC analytics job. Another
significant use of big data research is in information systems (Grover et al, 2020). In addition,
non-routine cognitive works could be made computerisable with the help of big data (Frey
and Osborne, 2017). Jarrahi (2018) suggested that artificial intelligence (AI) coupled with BDA
is well suited to handle complex decision-making. General literature on BDA can be found in
the work of Larson and Chang (2016). Roberts and Hazen (2016) emphasised the redesign of
SC by integrating dimensions of process, people and technology of big data. In a theory-
driven study, Hazen et al. (2018) analysed theories for BDA-based sustainable SC. The eight
theories analysed were social capital, economic, network, institutional, resource-based,
resource dependence, ecological modernisation and agency. Fundamental tenets of these
theories were analysed along with future research directions for big data in SC with aspects of
the triple bottom line. Arunachalam et al (2018) proposed a framework for SC with BDA
capabilities regarding data generation, visualisation, analytics, management and integration.
The four stages that were considered were initiation, adoption stage with poor data and rich
analytics, adoption stage with rich data and poor analytics and the routinisation stage.
Rodriguez and Da Cunha (2018), Sanders (2016), and Brinch (2018) proposed conceptual
frameworks of BDA for SC. The proposed framework by Rodriguez and Da Cunha (2018) was
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intended to gather the key categories: absorptive capacity, sustainability performances and
SC innovation for the firm. The ability that BDA has to support sustainability and
organisations can obtain a competitive advantage by responding to customer needs in a
dynamic market. Sanders (2016) proposed a four-stage maturity map focusing on data
structuring, data availability, fundamental analytics and advanced analytics. Big data drives
leading SC organisations; however, the majority of organisations have yet to implement it
because of the lack of understanding by top management. In addition, there exist several
roadblocks in ethical, operational, privacy and security aspects for BDA applications in SC
(Ogbuke et al., 2020). Brinch (2018) proposed a framework based on value theory and business
process theory: SC practitioners must understand the value of BD and need to conceptualise
strategies for its implementation. Furthermore, Grover et al (2018) proposed a research
framework for using BDA to create strategic business value. The framework illustrated
various constructs and their relationship to value creation of BDA and its implementation.
The framework also discussed research components for future BDA research problems.
The factor analysis method is most prevalent in BDA adoption for SC. Whereas other
quantitative operation research methods, like neutrosophic set theory, are significantly
utilised in the SC domain (Abdel-Baset et al, 2019). Some of the essential recent studies used
partial least squares—structural equation modelling (PLS-SEM) (Shafique et al., 2019; Dubey
et al,, 2019a, 2021; Lai et al., 2018; Jeble et al., 2018) and SEM (Raman et al, 2018). Wu et al.
(2017) used multi-criteria decision-making tools, such as grey DEMATEL and fuzzy-
DEMATEL, whereas Lamba and Singh (2018) employed hybrid ISM, Fuzzy-TISM and the
DEMATEL technique. Lamba and Singh (2018) identified the most critical enablers to
implement BDA in operations and SC. RoBmann et al. (2018) used fuzzy clustering, whereas
Queiroz and Telles (2018) used regression analysis. RoBmann ef al. (2018) analysed the social
impact of BDA in SC using the Delphi approach. The study showed the positive effect of BDA
on the reduction of safety stocks, supplier performance and demand forecasts. Queiroz and
Telles (2018) identified a positive relationship between BDA knowledge and SC levels.

2.3 BDA for Supply Chain 4.0

The role of BDA for Supply Chain 4.0 is not explored much in the literature. Enabling
technologies for Supply Chain 4.0 are cloud computing, IoT, blockchain, digital twin,
cybersecurity and big data. Calatayud et al (2019) suggested a concept of self-thinking SC
with Al and IoT capabilities. According to de Campos Martins and Simon (2018), more than
80% of research articles on BDA and Supply Chain 4.0 discuss technical challenges. However,
social-cultural challenges such as fear of changes, man—technology relation and a human-
resource replacement must also be addressed. Yadav ef al. (2020) have pointed out ineffective
workers’ training, lack of workers employed and culture change resistance as significant
social-cultural challenges.

Zhong et al. (2015) proposed the conversion of typical supply chain resources into smart
objects. A framework of BDA for RFID SC data was proposed with transmission mechanism,
data warehouse, data clustering and knowledge representation. Ben-Daya et al (2019) argued
that the IoT with limited analytical capabilities could have a positive impact on
manufacturing SC. Haddud et al. (2017) identified potential challenges for IoT adoption in
SC. The top five challenges identified were the integration of heterogeneous data and
technologies, global standards in the communication protocol, security issues, top
management support and loT architecture.

Santos et al. (2017) proposed BD architecture for the implementation of Industry 4.0 in a
multinational organisation. Case implementation was done for “Bosch Braga” in three
phases: data collection, data preparation and visualisation. O’'Donovan et al (2015)
emphasised the role of BDA for the highly-optimised SC of smart manufacturing. BDA



can assist in demand-driven SC from raw material to delivery to end customers; however, it
needs a multi-disciplinary team for managing end-to-end SC. In addition, BDA also aids in
better forecasting and business planning which further improves the business performance
of the organisation (Chang, 2020). Babiceanu and Seker (2016) emphasised the visibility of
operations across manufacturing SC and proposed guidelines for the SC collaboration of
manufacturing CPS. Arya et al. (2017) conducted an exploratory study for army spare parts
and the impact of Supply Chain 4.0 on planning, maintenance, distribution and collaboration
was discussed. The following conclusions and research gaps are identified:

(1) The synthesis of the literature review shows that developed countries such as China,
Denmark, the USA and Germany have started using BDA for SC (Brinch et al., 2018;
Kache and Seuring, 2017; Lai et al., 2018) and application of Supply Chain 4.0 (Ivanov
et al, 2019; Makris ef al, 2019). Developing countries are catching up, and research
studies show that issues in BDA for Supply Chain 4.0 are different in these economies.

(2) The existing literature mainly focused on BDA for SC and Supply Chain 4.0. Though
these topics were discussed separately and very few articles discussed BDA for
Supply Chain 4.0. In a recent study for firms in India, Raut et al (2019) explored the
mediating role of BDA to achieve business performance. However, this study did not
investigate the Supply Chain 4.0 aspect.

(3) The current literature shows a positive impact of BDA on SC agility (Dubey et al,
2019a), SCresilience (Dubey ef al., 2019b), SC sustainability (Cheng ef al, 2018) and SC
innovation (Queiroz and Telles, 2018). However, contributions of BDA for Supply
Chain 4.0 business performance are rarely discussed.

The above mentioned research gaps suggest investigating the capabilities of BDA to fulfil the
data requirement of Supply Chain 4.0 processes in order to improve business performance.
Hence, in this work, we investigate the mediating role of BDA between Supply Chain 4.0
business performance and nine performance factors using qualitative research method based
on survey administration. A hybrid SEM-ANN method is developed to determine the
influence of BDA on business performance. The SEM approach is compensatory and used to
verify the linear relationship. ANN is non-compensatory and used to verify the linear as well
as non-linear relationships. Thus, ANN balances SEM (Shmueli and Koppius, 2011) and is
more progressive compared to multiple linear regression approaches (Chong, 2013).

3. Proposed framework and hypotheses

Figure 1 shows the proposed framework that considers 11 factors: organisational and top
management support performance (OTMSP), information and product delivery performance
(IPDP), sustainable procurement and sourcing performance (SPSP), collaborative planning
performance (CPP), sustainable manufacturing performance (SMP), closed-loop supply-chain
performance (CLSCP), operational performance (OP), technical and knowledge capability
(TKC), environmental performance (EP), big data analytics (BDA) and Supply Chain 4.0
business performance (SBP). BDA is a mediator amongst SBP and the other nine factors that
are OTMSP, IPDP, SPSP, CPP, SMP, CLSCP, OP, TKC and EP. A Delphi method was used to
finalise the shortlisted factors (Skulmoski et al, 2007). All factors were approved by the
Delphi expert panel. Furthermore, the mentioned eleven factors were divided into eighty-two
items (see Table 1).

4. Research methodology
Figure 2 shows the proposed research methodology.
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Figure 1.
Conceptual framework

Organizational and Top
Management Support
Performance (OTMSP)

Information and Product
Delivery Performance (IPDP)

HI (+)

H2 (+

Sustainable Procurement and
Sourcing Performance (SPSP)

H3 (+)

Collaborative Planning

Performance (CPP) H4 (+)
H5 (+) X . HIO0 (+) Supply chain
Sustainable Manufacturing Big Data Analytics 4.0 Business
Performance (SMP) (BDA) Performance
(SBP)
H6 (+)

Closed-loop Supply-chain
performance (CLSCP)

Operational Performance
(OP)

Technical and Knowledge
Capability (TKC)

Environmental Performance
(EP)

Note(s): + Signature indicates ‘a positive impact’

The study was conducted in three phases. In the first phase, the literature was reviewed using
the keywords “Supply Chain 4.0”, “big data analytics”, “Industry 4.0 and supply chain”. This
led to the formation of RQs and ROs in the Indian context. Furthermore, a conceptual
framework was developed, and hypotheses were proposed. In the second phase, a
questionnaire was developed for the survey based on a seven-point Likert scale. 13
experts were requested to respond to the questionnaire, out of which ten experts, comprising
four professors and six industry personnel, responded. A pilot study was carried out with 115
responses. Based on experts’ inputs and pilot studies, the final survey was finalised. 40
different types of manufacturing organisations were contacted. The survey was conducted
from October 2018 to April 2019 through personal interviews and e-mails. Around 8-10
samples were collected from each Indian manufacturing organisation. The identified samples
were collected from managers of different departments such as Supply Chain, HR,
purchasing, R&D, production and accounting. A total of 325 questionnaires were distributed
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Figure 2.
Research methodology

Literature survey on SC 4.0 and BDA

v

Identify RQs (research questions) and ROs (research objectives) in

context with developing economy

\

Develop a conceptual model and propose the hypothesis

V

Industry
Experts

Finalise the questionnaire (7

Academia

\ 4

point Likert scale)

Experts

4

Questionnaire pre-test

Collection of data

!

Exploratory factor analysis (EFA)

v

Confirmatory factorial analysis (CFA)

v

Structural equation modelling (SEM)

Artificial neural network (ANN) model

Y

Sensitivity analysis to rank variables

VY

Results and discussion

A

Conclusion and implications of study

Statistical Analysis

ANN Analysis



in these organisations. Four questionnaires were not filled in correctly, and thus, 321
responses were used and digitised in a statistical package of social science (SPSS). In the third
phase, three stages of EFA-CFA-SEM were used for hypothesis testing and ANN was used to
rank the identified factors and verify the SEM results. Thus, this work makes use of
statistical analysis (EFA-CFA-SEM) and ANN analysis to analyse the surveyed data.
Furthermore, the results obtained from these two analyses were discussed which shows the
mediating role of BDA in improving business performance in Supply Chain 4.0.

4.1 Sample characteristics

Table 2 shows the descriptive statistics of the 321 responses. It shows that the highest
number of responses (52.34%) are graduates, and 32.09% have between 11 and 15 years of
experience. The highest number of responses were from the auto component manufacturer
(24.61%), and 35.51% fall in the 21-30 million USD annual sales revenue.

4.2 Statistical analysis
The 321 responses were analysed using EFA-CFA in order to examine validity, reliability and
structure. Microsoft Excel was used to tabulate the data. These data were imported to SPSS
20.0 software for the analysis. Analysis of moment structures (AMOS) software was used for
SEM analysis.

4.2.1 Exploratory factor analysis (EFA). EFA analysis uses a statistical approach to
determine the correlation between the variables (Anderson and Gerbing, 1984). In EFA,
firstly, data suitability is checked (Williams et al., 2010). Bartlett’s test of sphericity and KMO

Particular Classifications No. of responses %
Gender Male 224 69.78
Female 97 30.22
Total 321 100%
Years of experience 5-7 46 14.33
8-10 83 25.86
11-15 103 32.09
More than 15 89 27172
Total 321 100%
Educational qualification Graduates (B.E/BBA/B. Tech) 168 52.34
Post-graduates (M. Tech/MBA) 140 4361
PhD (Technology/Management) 13 4.05
Total 321 100%
Type of industry Auto component manufacturer 79 24.61
CNC Machine Tool 57 17.76
Turbo sub-assemblies 71 2212
Chemical products 54 16.82
Furniture 60 18.69
Total 321 100%
Annual sales revenue (million USD) 10-20 52 16.20
21-30 114 35.51
31-40 105 3271
More than 40 50 15.58
Total 321 100%
Organisation size (no. of employees) 100-150 37 11.53
151-300 85 26.48
301-500 122 38.00
More than 500 77 2399
Total 321 100%
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Table 2.
Descriptive statistics of
the sample
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(Kaiser-Meyer-Olkin) statistics are the two measures used for checking data appropriateness.
The significance value < 0.05 and KMO > 0.7 are considered as within the desirable range
(Hair et al.,, 1995). EFA analysis was carried out of 321 responses received. Measures were as
follows: KMO = 0.851 > 0.7 and p = 0.000 < 0.05, i.e. 95% confidence level. The extraction
method used was principal component analysis (PCA) and Varimax as a rotation method.
The rotation converged in six iterations and loading of greater than 0.6 was observed for all
variables without cross-loading. Thus, EFA results were found to be satisfactory for SEM.

4.2.2 Confirmatory factorial analysis (CFA). CFA illustrates the relationship between
latent variables and observed factors (Chan et al,, 2007). CFA assesses validity and reliability
through goodness-of-fit indices. According to Hu and Bentler (1999), threshold values of
goodness-of-fit are as follows:

Ratio of chi-square test to degree of freedom (DF) = <5 occasionally permissible; <3 good.

Goodness-of-fit index (GFI) = >0.95.

Comparative fit index (CFI) = >095 Very good; >0.90 good; >0.80 occasionally
permissible.

Normed fit index (NFI) = >0.80.

Adjusted goodness of fit index (AGFI) = >0.80.

Root mean squared error of approximation (RMSEA) = <0.05 very good; 0.05-0.10
moderate; >0.10 not permissible.

In this study, CFA analysis was done on nine constructs of BDA and one construct of
Supply Chain 4.0 Business Performance (SBP). The ten constructs were permitted to correlate
with each other freely. The nine constructs of BDA were “Organisational and Top
Management Support Performance (OTMSP), Information and Product Delivery
Performance (IPDP), Sustainable Procurement and Sourcing Performance (SPSP),
Collaborative Planning Performance (CPP), Sustainable Manufacturing Performance
(SMP), Closed-loop Supply-chain performance (CLSCP), Operational Performance (OP),
Technical and Knowledge Capability (TKC), and Environmental Performance (EP)”. For this
study, a chi-square test for the degree of freedom (DF) is 2.342, which is between 2.00 and 3.00,
therefore acceptable. GFI = 0.924 > 0.90, CFI = 0.957 > 0.95, and NFI = 0.864 > 0.80 indicates
best fit. RMSEA <0.05 is considered remarkable. However, the obtained value of RMSEA is
0.065, which is in the permissible range of 0.05-0.1 and thus acceptable. It concludes that the
dataset point is in the direction of the goodness-of-fit and acceptable for further analysis.

As discussed, CFA was performed for all ten constructs in order to test the convergent
validity of all items. Loading between factors and measured variables at a one per cent level
must be more than 0.5 (Barki and Hartwick, 2001). For the measurement model, standard
estimates less than 0.70 are as follows: knowledge management (TKC4: 0.631), carbon
emission (EP1: 0.526), ecological cost (EP3: 0.591), transparency (SBP1 with a value of 0.529),
inventory management (IPDP1: 0.690), data quality (IPDP2: 0.675), timely delivery (IPDP7:
0.650), lean practices (SMP1: 0.471), agile practices (SMP2: 0.581) and total quality
management (SMP3: 0.575). Out of these ten items, nine items have a value of more than
0.5, except lean practices (SMP1) with a value of 0.471. This analysis shows sufficient
evidence of convergence validity as the rest of the loadings are beneficial to internal
consistency. AMOS-20.0 was used for the CFA analysis; estimates and the path diagram are
shown in Figure 3.

4.2.3 Structural equation modelling (SEM). SEM investigates multivariate data by
including independent variables (IVs), latent constructs (LCs) and dependent variables (DVs).
IVs and DVs can be measured factors or variables, which can be continuous or discrete. Two
phases of SEM include the validation of LCs, i.e. judging a complete fitting model and distinct
structural models hypothesised amongst LCs (Jenatabadi, 2015). Referring to logical
precedents, bi-directional arrows of the CFA model were replaced with single-headed arrows.
This obtained SEM test results that were initially verified for the model fit. This study uses
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AMOS-20.0 as it reads SPSS files and offers quality path diagrams. The ratio of the chi-square
test to DF is 2.380, which is considered acceptable, as it is between 2.00 and 3.00. The
GFI = 0.967 > 090 and NFI = 0.864 > 0.80, which indicates the best fit. Moreover, the
RMSEA <0.05 and CFI >0.95 are considered remarkable. However, the obtained value of
RMSEA and CFI are 0.065 and 0.942, respectively. RMSEA and CFI are in the permissible
range of 0.05-0.10 and 0.90-0.95 respectively, therefore acceptable. Figure 4 shows the SEM
path diagram.

4.3 Artificial neural network analysis

ANN is a popular artificial intelligence method used for improving the performance and
quality of analysis (Wang ef al., 2020). Predictive accuracy of ANN is higher not only for linear
relationships but also for nonlinear relationships. ANN processes information through
interconnected neurons via weighted links (Leong et al, 2015). The benefits of ANN are that it
does not need multivariate assumptions of homoscedasticity, normality or linearity
(Abubakar ef al., 2017).

4.3.1 Artificial neural network model. In ANN, the multi-layered model is commonly used
(Fausett, 1994), which has one input layer, one output layer and one or more hidden layers.
This study uses a multi-layered perceptron (MLP) with one hidden layer and the feed
forward-back propagation (FFBP) algorithm. In this paper, the given network was examined
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Figure 3.
Path diagram for CFA




JEIM
345

1468

Figure 4.
Path diagram for SEM
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with one to ten nodes for the hidden layer, and ten nodes were selected. The ANN model is as
shown in Figure 5. Each of the input layers and the output layer has seven nodes. As shown in
Figure 5, seven significant variables (OTMSP, IPDP, SPSP, CPP, TKC and EP) of structural
analysis were used as inputs for the ANN.

4.3.2 Sensitivity analysis. In neural networks, cross-validation with 90% data for training
and 10% data for testing is recommended (Tan et al, 2014). The bipolar sigmoidal function
was used for the hidden and output layers for better accuracy. To confirm the significance of
the predictor variables, non-zero synaptic weights were linked to the hidden layer. Tables 3
and 4 give details of the analysis.

Each factor was calculated through a sensitivity analysis of seven significant factors. The
root mean square of error (RMSE) is an indication of the accuracy of the ANN model. Apart
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Input Layer Hidden Layer Output Layer
For output BDA For output SBP

ANN Training Testing Training Testing
1 0.868 0.925 0.995 0.969

2 0.991 1 0.986 0.968

3 1 1.001 0.995 0973

4 0.998 1.001 1.007 0.997

5 0975 0.981 1.002 0.999

6 0941 0.951 1.008 0973

7 1.022 0.987 1.007 1.004

8 0975 0.941 0.981 1.032

9 0.307 0.829 0.983 0.997

10 0.587 1.025 1.014 1.005
Mean RMSE 0.8664 0.9641 0.9978 0.9917
Standard deviation 0.234533 0.056781 0.011593 0.020651
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Figure 5.
ANN model

Table 3.
Root mean square of
error (RMSE) values

from a few points, the ANN estimated values were close to the actual values. The sensitivity
analysis shows that the top three factors that influence BDA are “Information and Product
Delivery Performance (IPDP), Sustainable Procurement and Sourcing Performance (SPSP),

and Organisational and Top Management Support Performance (OTMSP)”,

operational performance (OP) has the least impact on BDA.

whereas
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Table 4.
Sensitivity analysis

ANN SPSP TKC EP CpP OTMSP oP IPDP
1 0.16 0.143 0.151 0.141 0.146 0.12 0.138
2 0.154 0.15 0.141 0.162 0.142 0.104 0.147
3 0.194 0.121 0.117 0.116 0.161 0.115 0.175
4 0.151 0.142 0.155 0.138 0.15 0.127 0.137
5 0.197 0.099 0.128 0.139 0.129 0.163 0.144
6 0.157 0.146 0.137 0.12 0.159 0.11 0.172
7 0.127 0.154 0.142 0.134 0.126 0.147 0.17
8 0.133 0.149 0.145 0.138 0.137 0.104 0.193
9 0.109 0.135 0.133 0.138 0.131 0.133 0.221
10 0.096 0.124 0.156 0.126 0.14 0.179 0.178
Mean importance 0.1478 0.1363 0.1405 0.1352 0.1421 0.1302 0.1675
Ranking 2 5 4 6 3 7 1

Normalised importance (%)  88.23 81.37 83.88 80.71 84.83 77.73 100

5. Analysis and discussion

5.1 Hypothesis testing

Table 5 shows standardised estimates of each hypothesis. Out of ten hypotheses, eight are
supported: organisational and top management support performance (OTMSP), information
and product delivery performance (IPDP), sustainable procurement and sourcing
performance (SPSP), collaborative planning performance (CPP), operational performance
(OP), technical and knowledge capability (TKC) and environmental performance (EP)
positively influence big data analytics (BDA). In addition, BDA positively influences Supply
Chain 4.0 business performance (SBP). However, two of the hypotheses, sustainable
manufacturing performance (SMP) and closed-loop supply-chain performance (CLSCP), do
not positively influence BDA.

5.2 Significance of each variable
Table 5 shows that the findings of this study are congruent with past literature. ANN ranks
“Information and Product Delivery Performance (IPDP)” highest, followed by SPSP, OTMSP,
EP, TKC, CPP and SP. The ANN analysis gives the highest rank to “Information and Product
Delivery Performance (IPDP)”, which shows that the organisation must ensure timely
delivery and information sharing. Critical factors for SC management marketing include
operational and market data, inspection and merging of operational and market information,
concurrency in planning, secured data flow and improved decision-making at the SC level
(Ardito et al,, 2019). BDA ensures information availability over the end-to-end SC. However,
ethical issues such as data security and privacy still need to be addressed (Chang et al., 2021).
“Sustainable Procurement and Sourcing Performance (SPSP)”, with the second rank in the
ANN analysis, has the second-highest standardised estimate. Doolun et al (2018) emphasised
the usage of BDA for decision-making in location-allocation. They found that the adoption of
sustainable procurement practices must be guaranteed through Government policies and ISO
standards. Surprisingly, “Organisational and Top Management Support Performance
(OTMSP)” ranked third in the ANN analysis, whereas it has the highest standardised
estimate. The results are aligned with the work of Moktadir ef al. (2019), who emphasised the
significance of strategies toward SC-4.0 and policy-making for BDA adoption. Indeed, they
showed the significant role of top management in the adoption of the latest technologies.
According to Cheng et al (2018), Jeble et al (2018), and Moktadir et al (2019),
environmental factors need to be considered for BDA adoption. Our results support these
findings by recognising environmental performance (EP) as a significant factor with a rank of
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four. BDA with SC connectivity can work as a moderator technology with perceived benefits,
data quality and IT capabilities (Lai et al, 2018). Moreover, the study emphasises the positive
effect of technical and knowledge capability (TKC) of BDA. Kache and Seuring (2017) argued
about BDA'’s role on logistics, SC transparency and visibility, which is supported by our
results of collaborative planning performance (CPP) positively influencing BDA. The BDA-
SC triangle consists of 1) SC partnership: BDA for the short term, BDA for logistics and SC,
strategies for SC innovation; 2) human knowledge: BDA knowledge, skill professionals in an
organisation, market’s professionals, awareness; 3) innovation culture: IT tool, investments
and IT security (Queirozand Telles, 2018). This study also emphasises the positive effect of
operational performance (OP) on BDA. This study can help managers to understand the
characteristics of significant factors in order to establish tactical and strategic policies of
BDA adoption.

5.3 Theoretical contribution of the study

The theoretical contribution of this study is twofold. Firstly, we propose an approach based
on the integration of SEM and ANN to identify and evaluate significant BDA factors for
Supply Chain 4.0 in developing economies. This approach allows overcoming the limitations
of the SEM by considering non-linear relations due to the particular features of ANN. In that
case, ANN is non-compensatory and used to verify the linear, as well as non-linear,
relationships. The results emphasise the mediating role of BDA for Supply Chain 4.0 business
performance.

Secondly, the study can help researchers and academicians understand, assess and
evaluate the impact of BDA factors and sub-factors on Supply chains. The strategic policy
will help in effective implementation with due consideration to relevant factors. Decision-
makers can prepare roadmaps for BDA for Supply Chain 4.0. Furthermore, to achieve SC
business performance, support of top management, the participation of employees,
organisational culture, collaboration and sustainable practices are most important.
Decision-makers must construct BDA as one of the organisation visions to overcome the
hurdles in adoption. Top management must arrange training in order to enhance the I'T skills
of the employees. According to Gijzen (2013), big data can help achieve the United Nations
Sustainable Development Goals (SDGs). Adoption of BDA and Supply Chain 4.0 needs a
systematic approach to achieve SDG 9 “Industry, Innovation and Infrastructure”, SDG 11
“Sustainable Cities and Communities” and SDG 12 “Responsible Consumption and
Production”.

6. Conclusion
According to SAS (2013), the number of organisations that use BDA is relatively low. This
stresses the need to study BDA adoption and its impact on firm performance. In this regard,
the present study addresses three research questions (RQ). The first RQ investigates the
significant factors for the adoption of BDA in Supply Chain 4.0 environments. This is
addressed by carrying an exhaustive literature search and validating them with experts’
opinions. The second RQ investigates the impact of these factors on BDA adoption, while the
third RQ investigates whether BDA has a mediation effect on Supply Chain 4.0 performances.
To do so, an integrated SEM-ANN analysis is developed on the data collected from 40
manufacturing firms. The results reveal eight factors that positively influence BDA adoption,
while we obtained the confirmation that BDA has a meditation effect on Supply Chain 4.0
performances.

Further advanced analytics, followed by digital communication to various stakeholders in
SC, will assist organisations in focusing on customer needs. Based on technology integration,



data management, advanced analytics, and digital interfaces, organisations can develop
improved operations, reconfigure the SC model and develop business strategies (Thienen
etal,2016). Thus, the paper has a notable contribution to BDA adoption for Supply Chain 4.0.
Developing countries like India are in the process of implementing Supply Chain 4.0. Latest
studies like the adoption of Supply Chain 4.0 in multinationals (Makris ef al., 2019), digital SC
with Industrial IoT (Manavalan and Jayakrishna, 2019), smart SC (Frank et al, 2019) and
dynamics in SC (RoBmann et al., 2018) confirm the benefits of BDA in SC. The study proposes
a conceptual model of BDA as a mediator to describe the SC business performance. This
study will help researchers to outline experimental research in BDA and Supply Chain 4.0
business performance. The study will also guide BDA practitioners on how to develop
potential business performance through different stages.

There are some limitations to the study as it was conducted in Indian manufacturing
organisations. Indeed, with minor modifications, similar works can be carried out in other
developing economies. Moreover, a structured questionnaire was used for data collection,
which may create heterogeneity, and the data sample can be increased. Thus, more data
samples can be collected with another method of data collection. As questionnaire-based data
collection was done individually, the decision may vary based on organisational culture,
industry and time. Furthermore, additional analysis, where the unit of analysis is the
company, may be carried out to determine BDA adoption in specific industries.

Future research work would investigate the mediating role of BDA for lean, agile, resilient
and green (LARG) effects on SC performance. Another research direction inspired by the
current findings would be the identification of the roles of blockchain and artificial
intelligence in conjunction with BDA in Supply Chain 4.0.
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