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Abstract This paper presents an approach based on Genetic Algorithm (GA) and 

Infinitesimal Perturbation Analysis (IPA) technique to maximize the production rate 

in unreliable production lines.  Unlike Traditional optimization techniques based on 

simulation which require a large number of simulations runs to find the optimal so-

lutions, the proposed approach uses a long and unique simulation. Indeed, through 

this single simulation, IPA which forms the heart of the GA-IPA, gives a reliable 

estimate of the gradient of the production rate, and where the input solutions are 

provided by GA. This gradient is then integrated into a stochastic optimization al-

gorithm that runs simultaneously with the simulation to select the optimal buffer 

allocation. Computational experiments on various production lines are presented 

and discussed. The average Production Rate (PR) is calculated with 5 runs for the 

largest problem and up to 50 runs for the smallest problem, showing on one hand 

that the developed GA-IPA algorithm clearly outperforms the seven benchmark al-

gorithms taken from the literature, and proving on the other hand the rapid conver-

gence of our algorithm. 

Keywords Perturbation analysis; Genetic algorithm; Simulation; Production lines; 

Buffer allocation. 
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1. Introduction 

A production line is composed of a sequence of machines, storage buffers, trans-

portation components, and other elements that interact to deliver products [1]. Pro-

duction lines are stochastic systems of product flow that alternate resources between 

machines and storage spaces with a finite capacity. Random occurrences like human 

operation challenges, quality issues, machine failures, and service time variations 

at various points in the system might temporarily stop machine operations. These 

sorts of interruptions have an impact on how efficiently production systems operate 

since even a little change in the design requirements might have a significant nega-

tive impact on performance. Optimally designing these lines therefore requires tak-

ing into account a large number of variables characterizing these resources (varia-

bility of cycle times, maximum storage capacities, repair and failure time 

distributions, etc.) [2]. The Buffer Allocation Problem (BAP), which concerns the 

allocation of buffer capacities and their placement inside the line, is the topic  of 

several studies [3]. This article presents the results of the development of a new op-

timization technique based on the combination of Infinitesimal Perturbation Analy-

sis (PA) and Genetic Algorithm (GA) via simulation for solving the BAP. The paper 

is structured as follows. Section 2 provides a brief overview of production line op-

timization approaches for BAP. The mathematical problem formulation and the so-

lution strategy are given in Section 3. Section 4 provides the proposed approach, 

while presenting the associated algorithms. Section 5 presents numerical examples 

conducted and discussions of the results. Finally, in Section 6, conclusions and fu-

ture research directions are discussed. 

2. Literature review 

The BAP is an NP-hard problem in terms of combinatorial complexity [4]. Several 

researchers addressed the different techniques used to solve this issue [5], [6]. Op-

timization via simulation is one of the techniques that couples simulation to a solu-

tion-finding algorithm. The simulation allows for the evaluation of the performance 

measure (e.g., the production rate) at each execution, while the optimization algo-

rithm provides directions in the search space for new system design solutions. [7] 

conduct symbolic regression using genetic programming. They propose simulation-

based meta-models of industrial systems using a sampling strategy modified for ge-

netic programming. [8] utilize simulation to identify the best buffer allocation that 

improves the production line’s reliability by reducing machine micro-downtime. 

They take into account the effect of the cost on the buffer allocation in their simu-

lation.  [9] employ a continuous-line approach rather than discrete lines to optimize 

the PR with respect to buffer capacity in order to identify the optimal buffer alloca-

tions. Most of the methods of optimization via simulation require a large number of 

simulations before finding a good solution to the problem [10] and have, thus, the 
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disadvantage of consuming significant computation time. Therefore, this study fo-

cuses to find the best buffer allocation technique while also reducing the amount of 

time required to attain convergence. This is why we are interested in Perturbation 

Analysis methods (PA) [11] because they propose a design solution that signifi-

cantly reduces calculation times by using a unique long simulation of the system. PA 

can be separated into two main categories: Infinitesimal (or zero order) Perturbation 

Analysis (IPA) [11] and Finite (or first order) Perturbation Analysis (FPA) [12], 

[13]. The main difference between IPA and FPA is that a perturbation in the former 

refers to a small (infinitesimal) delay in a transition time, whereas a perturbation in 

the latter refers to a jump (finite perturbation) on a sample path from one state to 

another due to parameter changes. By calculating the function derivatives acquired 

in a single simulation run, the PA is employed as a method for evaluating the per-

formance of discrete event systems [14]–[16]. Due to its ease and simplicity of im-

plementation, IPA is often utilized. It has been formerly mostly used with queuing 

networks, but it is currently principally used with stochastic fluid models [15]. For 

the purpose of minimizing a cost function,  [16] identify, by calculating the gradient 

of the cost function, the optimal capacities of the finished items and work-in-process 

buffers.  To optimize the parameters (buffer size) of a discrete event system, [17] 

study the application of several developed IPA estimates based on a stochastic fluid 

model. [18] propose an effective method for designing buffer capacities in assem-

bly/disassembly systems. 

To determine the optimal size for each buffer storage, [19] propose a GA inte-

grated to line-search approach. To identify the buffer sizes needed in open serial 

production lines to optimize the system's average production rate, a hybrid tech-

nique-based simulation optimization is presented by [20]. To find potential buffer 

sizes, the authors develop a hybrid strategy combining a genetic algorithm and sim-

ulated annealing, and to obtain the average production rate of the line, they use dis-

crete event simulation model as an evaluative tool. A multi-objective GA was re-

cently developed by  [21] to allocate the service times and buffers and provide a 

range of solutions for several objective functions.  Only 4 out of 95 research pub-

lished after 1998, according to [6], use a hybrid strategy to improve the buffer sizes. 

There are two contributions in this paper. First, the development of a general opti-

mization technique (IPA coupled with GA) for designing buffer capacities for sto-

chastic production lines. Second, diverse production system sizes may be consid-

ered by the methodology. 

3. Problem formulation 

Consider the production line shown in Figure 1, where parts are processed on the 

sequence of the unreliable machines 𝑀1, . . , 𝑀𝑛. Consider the vector of decision var-

iables 𝑠 = (𝑠1, 𝑠2,...,𝑠𝑛−1) of dimension n-1, where the set {𝑠1, 𝑠2,...,𝑠𝑛−1} are inte-

gers and denotes the storage capacities of the available physical locations and n is 

the number of machines. 𝐵𝑠 is the total storage capacity available for allocation on 
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all the locations of the production line and PR is the Production Rate. The design 

problem addressed consists of allocating 𝐵𝑠 over (n-1) stocks to maximize the pro-

duction rate PR:  

Fin 𝑠 = (𝑠1, 𝑠2,...,𝑠𝑛−1)  so as to maximize PR (1) 

Subject to: ∑ 𝑠𝑖
𝑛−1
𝑖=1 = 𝐵𝑠;    𝑠𝑖 are positive integer (for each i) (2) 

 

 

Figure 1. Open flow production line. 

4. Proposed GA-IPA 

 This study proposes a hybrid simulation-optimization method that combines GA 

with IPA to solve the BAP in unreliable production lines. GA is used to identify the 

input solutions to the IPA, which in turn is used to estimate the gradients of the PR 

with respect to buffer capacities. The gradients are subsequently incorporated into 

a stochastic algorithm to determine the optimal buffer capacities. GA is chosen to 

cover a wide search area thanks to its diversification and exploration capabilities, 

while IPA is employed to investigate each area more extensively, by taking ad-

vantage of its intensification and exploitation capabilities. One of the advantages of 

this method is the use of a single simulation only, which is achieved through the use 

of IPA to evaluate gradients of the PR at regular intervals during the same simula-

tion run. 

4.1 Genetic Algorithm (GA) 

One of the often-used evolutionary algorithms is GA [22]. GA requires a popula-

tion of individuals (or solutions; usually generated randomly). GA then repeats a 

number of steps (mutation, crossover and selection) for a predetermined genera-

tions’ number. We use in this study: (1) Tournament selection [23], which is effec-

tive and robust selection mechanism usually used by GA, (2) Arithmetic Crossover 

[24], where the selected parents (actual population) are linearly combined to gener-

ate new offspring (new population), and (3) Mutation: to satisfy the constraint (2), 
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an adjustment procedure is used to guarantee that the individual (i.e., buffer size) is 

feasible (i.e., an integer). 

4.2 Infinitesimal Perturbation Analysis (IPA)  

4.2.1 Choice of IPA 

This section is devoted to determine an estimate of  
𝜕𝑓

𝜕𝑠𝑖
  for 𝑖 = 1, … , 𝑛 − 1, and 

where f denotes the PR of the production line i.e., we search for a value of  
𝜕𝐸[𝑓]

𝜕𝑠𝑖
 

(𝐸[𝑓] is the average PR determined by observing all sample trajectories). These 

estimators are unbiased if the following condition is fulfilled: 

 
𝜕𝐸[𝑓]

𝜕𝑠𝑖
=  𝐸 [

𝜕𝑓

𝜕𝑠𝑖
]                              (3) 

Note that with two alternative values of the buffer size, a brute force simulation 

of the system may often approximate the left-hand side of (3) by 
∑ [𝑓(𝑠𝑖+𝛿,𝜔𝑘)−(𝑓(𝑠𝑖,𝜔𝑘)]𝑛

𝑘=1

𝜕𝑠𝑖
 (where 𝜔𝑘 is the random characteristic of the realization of 

an event). A single Monte Carlo simulation employing IPA is used to get the right-

hand side. According to the IPA theory, sample trajectories do not significantly af-

fect the average value of the process if, for a small discrete perturbation in the size 

of 𝑠𝑖, both the probability to encounter a discontinuity in f from one path to another 

and the discontinuity’s value, if there is one, are reasonably small [25]. Then, the 

constraint (3) is met if a long sample trajectory is chosen and: 

𝜕𝐸[𝑓]

𝜕𝑠𝑖
= lim

𝛿→0

𝑓𝛿

𝜕𝑠𝑖
                                (4) 

where 𝑓𝛿 is the total gain, due to the introduction of an infinitesimal perturbation 
𝛿, determined by using generation and propagation rules on a production line. 

 

4.2.2 Rules of generation and propagation of perturbation in production lines 

The evolution of the production line in a perturbed environment is predicted using 

different propositions and rules. The prediction is constructed from a nominal 
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sample trajectory using information on each server status at each event [2], [12]. 

Since the machines are unreliable, they may execute operations (up-state) or are 

down because of internal failures (down-state). In the up-state, a machine can be 

Full Output (FO) or blocked (resp. Null Input (NI) or starved) if its downstream 

(resp. upstream) buffer is full (resp. empty). We assume that the output machine 

(resp. input machine) can not be blocked (resp. starved).  

IPA algorithm pseudo-code 

Beginning 

Step 1. Initialization: 𝑆𝑢𝑚𝑗 = 0    (for i= 1 to n-1) 

Step 2. If 𝑀𝑖 is FO  then (for the first time) 

𝑆𝑢𝑚𝑖 = 𝑡𝑖 ⋅ 𝛿 
Step 3. If 𝑀𝑗 is NI  then  

𝑆𝑢𝑚𝑗 = 𝑚𝑎𝑥{𝑆𝑢𝑚𝑖 + [𝑁𝐼], 𝑆𝑢𝑚𝑗} − 𝑚𝑎𝑥{0, [𝑁𝐼]} 

Step 4. If 𝑀𝑖 is FO  then 

𝑆𝑢𝑚𝑖 = 𝑚𝑎𝑥{𝑆𝑢𝑚𝑗 + [𝐹𝑂], 𝑆𝑢𝑚𝑖} − 𝑚𝑎𝑥{0, [𝐹𝑂]} 
Step 5. If i=n    then (Last machine) 

𝜕𝑓

𝜕𝑏𝑖
= − (

𝑓

𝑇
) ⋅ 𝑆𝑢𝑚𝑛   ;  𝑓∗ =

𝑃

𝑇−𝑆𝑢𝑚𝑛
    ;     

  Stop  𝑓∗represents the estimated PR in the per-

turbed path and 𝑇 is the duration of the 
simulation)  

        Else Go to Step 1 

End 

 

4.3 Stochastic algorithm 

A stochastic algorithm is used to find the optimal buffer sizes using the gradient 

estimations provided by IPA. This algorithm is based on the multi-dimensional 

Robbins and Monro's procedure to optimize stochastic systems [26] which consid-

ers gradients from the projection of the PR on the hyperplane of the constraint: 

∑ 𝑠𝑖
𝑛−1
𝑖=1  = constant. Then, the algorithm updates intermediate buffer sizes by updat-

ing in the gradient's direction at each iteration. We develop a single run optimization 

technique i.e., at each simulation of P units (P<L), where L is the total number of 

parts to produce during the simulation. 
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Stochastic algorithm pseudo-code 

Beginning 

Step 1. k=1. choose the initial values for all 𝑠𝑖
𝑘 (for 

𝑖 = 1, … , 𝑛 − 1) 

Step 2. Simulate L parts and calculate gradients 
𝜕𝑓

𝜕𝑠𝑖
 at 

iteration k using IPA. 

Step 3. for all 𝑠𝑖 do 𝑠𝑖
𝑘+1 = 𝑠𝑖

𝑘 +
𝛼

𝑘
(𝜕𝑓 𝜕𝑠𝑖⁄ −

1

𝑛−1
∑ 𝜕𝑓 𝜕𝑠𝑖⁄𝑛−1

𝑖=1 ) 

                                                                    

Step 4. If 𝑠𝑖
𝑘+1 ≤ 0 then 

𝑠𝑝
𝑘 = Arg min 𝑠𝑖

𝑘
;𝑠𝑝

𝑘+1 = Arg min 𝑠𝑖
𝑘+1

;      

𝑎 ~ 𝑈 (0,1) ;  𝑑 = |
𝑎⋅𝑠𝑝

𝑘

𝑠𝑝
𝑘+1−𝑠𝑝

𝑘| 

𝑠𝑖
𝑘+1 = 𝑠𝑖

𝑘 + 𝑑 ∙
𝛼

𝑘
(𝜕𝑓 𝜕𝑠𝑖⁄ −

1

𝑛−1
∑ 𝜕𝑓 𝜕𝑠𝑖⁄𝑛−1

𝑖=1 )  

 

Step 5. If |𝑠𝑝
𝑘+1 − 𝑠𝑝

𝑘| ≤ 𝜀 then 𝑠𝑖= Anint(𝑠𝑖
𝑘+1)          

stop  

        If P parts are simulated then  

stop  

   Else k=k+1, go to step2. 

End 

 

The slope of function f at the optimum determines the stopping criterion i.e., the 

algorithm converges, through the optimization process, when a local maximum is 

found. It follows that the selected criteria 
𝛼

𝑘
⋅𝑚𝑎𝑥𝑖

𝑛(
𝜕𝑓

𝜕𝑠𝑖
−

1

𝑛−1
∑

𝜕𝑓

𝜕𝑠𝑖

𝑛−1
𝑖=1 ) < 𝜀 (which 

denotes, at a given iteration, the best progression of the buffer capacity on the slope) 

is a simple acceptable stopping criterion for the previous algorithm at each iteration 

k (where 𝛼 is a random constant determined by choosing an initial value to keep, 

after each iteration, the value of the 𝑠𝑖 in the same order). This stopping condition 

is a guarantee that at least a local optimum will be found. 

5 Numerical Experiments 

The first set of experiments compare the outcomes of our algorithm with those of 

state-of-the-art algorithms involving 5, 10 and 20-machines production line. The 

second set examines the effectiveness of the proposed method on large production 

lines (i.e., production line with 40 and 50-machines). The simulation models are 

built using the discrete event simulation software Arena 14.0 [27] and the algo-

rithms are coded in Java. In all experiments, the repair and failure times follow a 

geometric distribution with probabilities of 𝑟𝑖 and 𝑓𝑖, respectively. Determining the 
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appropriate number of replications is crucial as a high number of runs can result in 

long computational times, whereas a small number of runs may lead to biased solu-

tions. Additionally, the operator parameters of GA play a critical role in the conver-

gence of the algorithm. Well-designed operators can result in faster convergence 

and in obtaining the best possible solution for a given initial population [28]. To 

achieve this, we conduct preliminary experiments that show that a number of runs 

of 30, 20 generations and 30 individuals in each generation is the optimal setting. 

The algorithm terminates when it reaches a predetermined number generations (i.e., 

20 generations) or when there is no improvement in the value of PR. 
We compare our method to seven benchmark algorithms : Genetic Algorithm with 

Finite Perturbation Analysis (GA-FPA) [12], Simulated Annealing with  Genetic 

Algorithm (GA-SA) [20], Tabu Search with Analytical Decomposition Approxima-

tion (ADA-TS) [29], Immune Decomposition Algorithm (IDA) [30], Degraded 

Ceiling method with  decomposition approximation technique (DC) [31], Dual Gra-

dient Technique (DGT) [32], and Gradient Technique (GT) [33]. If a method's re-

sults are not provided for an experiment, it simply indicates that the results are not 

published. The best results are bolded in all tables. 

5.1 Results on small/medium dimensions  

5.1.1 Five-machine production line 

Table 1 presents the production line's parameters. The total available buffer space 

is 31 parts. The simulation model is executed for 50 runs and a total of 100,000 

parts. 

 

Table 1. Parameters of 5-machine line. 

 

 

The average production rates and the corresponding buffer size configuration 

achieved by the various methods are shown in Table 2. With the proposed GA-IPA, 

the buffer size configuration {6, 9, 11, 5} yields the best average PR value of 0.4927 

which represents an approximately 0.3% lower than the average PR of 0.4943 found 

by GA-SA [20], ADA-TS [29] and DGT [32]. The results provided in [20], [29], 

[30], [32] have all the same allocation pattern at the line's extremities as using GA-

IPA. Indeed, allocating small capacities at the extremities of the line and large ca-

pacities in the middle prevent from any potential line congestion. 

 

 

 

Machine 1 2 3 4 5 

1/𝒓𝒊 11 19 12 7 7 

1/𝒇𝒊 20 167 22 22 26 
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Table 2. Results on 5-machine line. 

Method Buffer allocation Avg. PR 

GT  5     11      8     7 0.4914 

DGT  7     10    10     4 0.4943 

ADA-TS 7     10    10     4 0.4943 

IDA 6     10    11     4 0.4941 

GA-SA 7     10    10     4 0.4943 

GA-IPA 6     9      11     5 0.4927 

5.1.2 Ten-machine production line 

Table 3 provides the failure and repair rates for a production line of 10 machines. 

A total buffer capacity of 270 items is available. The simulation model is executed 

for 30 runs and a total of 10,000 parts. 

Table 3. Parameters of 10-machine line. 

Machine 1 2 3 4 5 6 7 8 9 10 

1/𝑟𝑖 7 7 5 10 9 14 5 8 10 10 

1/𝑓𝑖 20 30 22 22 25 40 23 30 45 20 

 

As shown in Table 4, identical buffer configuration {14, 19, 30, 54, 45, 27, 23, 

24, 34} is obtained in [29] and [31] with an average PR of 0.64135. With nearly the 

same allocation of buffers of {14, 19, 30, 52, 47, 27, 23, 24, 34}. [20] obtain a 

slightly better value of PR of 0.64139. GA-IPA produces the best PR with a modi-

fied allocation of buffers of {19, 20, 38, 43, 44, 22, 32, 21, 31}. It should be noted 

that, in most cases, all approaches provide allocations of buffer capacities with 

larger storage space assigned in the center of the line. Most likely, this buffer allo-

cation pattern prevents blockages and facilitate the items flows. 
 
 
 

Table 4. Results on 10-machine line. 

Method Buffer allocation Avg. PR 

DC 14   19   30   54   45   27   23   24   34 0.64135 

ADA-TS 14   19   30   54   45   27   23   24   34 0.64135 

IDA 14   19   30   52   47   27   23   24   34 0.64139 

GA-SA 7   16   48   61   24   41   20   34   19 0.63016 

GA-IPA 19   20   38   43   44   22   32   21   31 0.64526 
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5.1.3 20-machine production line 

A total space for 100 items is available. The parameters of the production line are 

presented in the two first columns in Table 5. Column 3 and 4 provide the results 

obtained by [19] and [26], respectively. The results of our method are presented in 

the last column. As shown in Table 5, the developed hybrid algorithm GA-IPA out-

performs ADA-TS and GA-SA. Consequently, the developed GA-IPA strategy pro-

vides a clear advantage for solving BAP in large scale production lines. 

 

Table 5. Results on 20-machine line. 

Parameters Avg. PR 

𝑟𝑖 𝑓𝑖 ADA-TS GA-SA GA-IPA 

0.5 0.5 0.377895 0.382401 0.419729 

5.2 Results on large dimensions 

There have been very few studies devoted to the buffer allocation problem for 

large production lines (e.g.,[20], [34]). Researchers in this field assert that it takes 

very long computation times to obtain competitive results (typically dozens of 

hours). In other words, when there are more machines, the calculation takes longer 

to complete. In this experiment, we consider production lines with 40 and 50 unre-

liable machines. We compare the GA-IPA algorithm with the GA-FPA proposed in 

a previous work [12]. The repair 𝑟𝑖 and failure 𝑓
𝑖
 rates are geometrically distributed 

with  𝑟𝑖 = 𝑓𝑖 = 0.5. The experiment is carried out for 5 runs due to the very long 

computation times needed. The total buffer size is given in the second column of 

Table 6. Column 3 and 4 provide the comparative results of GA-FPA and GA-IPA 

(including small and large scale production lines). 

 

Table 6. Results on large production lines. 

Case 𝐵𝑚𝑎𝑥 
Avg. PR 

∇𝑃𝑅(%) 
GA-FPA GA-IPA 

5 machines 31 0.494833 0.492713 0.43 

10 machines 270 0.649203 0.645263 0.60 

20 machines 100 0.422175 0.419729 0.58 

40 machines 200 0.415568 0.415021 0.13 

50 machines 245 0.410301  0.410039  0.06 
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The results of GA-FPA are always better than GA-IPA. This may be explained by 

the fact that GA-IPA only considers total or zero propagations of perturbation unlike 

GA-FPA which additionally takes into account partial propagation of perturbations, 

as they refer to creation or deletion of periods of blockage (FO) or starvation (NI). 

It is noticeable that the differences in results between GA-FPA and GA-IPA are 

small (see last column of table 6) and they are very smaller as the production line is 

larger. This confirms the idea that a long nominal trajectory and a larger system size 

are more conducive to reproduce the occurrence of all the possible events (even rare 

events), and to the propagation and accumulation of perturbation at the exit of the 

system. The results are therefore more reliable as long as the perturbed trajectories 

are statistically similar to the nominal one. 

6. Conclusion 

In this paper, we combine infinitesimal perturbation analysis with genetic algo-

rithm to design serial production lines with unreliable machines and present an ef-

ficient approach GA-IPA for allocating buffer sizes. 

Experiments using infinitesimal order analysis are conducted and the results are 

experimentally compared with first (finite) order analysis (GA-FPA) for some pro-

duction lines. We notice that the predictions obtained by GA-FPA are closer to those 

obtained by GA-IPA but are always better than the GA-IPA ones. This may be ex-

plained by the use of IPA (infinitesimal variation) with finite discrete parameters 

(buffer capacity). Therefore, for discrete parameters (e.g., buffer size) or for large 

parameter changes, the FPA technique offers a good accuracy in the results. Alt-

hough, to reduce the computational time, the estimators provided by the API tech-

nique are retained as the gradients due to the simplicity of calculation and the ease 

of implementation. Thus, both GA-FPA and GA-IPA algorithms provide good es-

timates of the performance measure and lead to performant results. However, the 

choice of the technique to use (FPA or IPA) depends on the system to be studied 

(i.e., nature of decision variables, performance measure, complexity of the system, 

etc.) and on the unbiasedness of the gradient estimators.  

Exploring the limitations of GA-IPA in terms of solution quality and computation 

time and assessing whether our proposed method remains effective when dealing 

with up to 100 machines in a production system is a first research perspective. Fur-

thermore, as this study focuses only on maximizing production rate as a single ob-

jective a new direction would be to investigate the extension of our approach to the 

case when multiple objectives are considered, such as minimizing the work-in-pro-

cess (WIP) inventory or the lead time. A multi-objective approach could provide 

more comprehensive insights into the trade-offs between various performance met-

rics and enable more informed decision-making in the design and planning of AD 

systems. 
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