
Expert Systems With Applications 228 (2023) 120463

Available online 12 May 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

MUTRISS: A new method for material selection problems using 
MUltiple-TRIangles scenarios 

Shervin Zakeri a,b,*,1, Prasenjit Chatterjee c,2, Naoufel Cheikhrouhou b,3, Dimitri Konstantas a,4, 
Yingjie Yang d,5 

a Geneva School of Economics and Management, University of Geneva, Geneva 1211, Switzerland 
b Geneva School of Business Administration, University of Applied Sciences Western Switzerland, HES-SO, Geneva 1227, Switzerland 
c Chief Research Fellow, Faculty of Civil Engineering, Institute of Sustainable Construction, Laboratory of Operational Research, Vilnius Gediminas Technical University, 
Vilnius, Lithuania 
d School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Material selection 
Analytic geometry 
MUTRISS 
Relative closeness ratio 
Robustness analysis 
Compromise ranking coefficient 
Similarity degree 

A B S T R A C T   

This paper proposes a new Multiple-criteria decision-making (MCDM) method called MUltiple-TRIangles Sce
narioS (MUTRISS) with two scenarios respecting different levels of access to complete information for material 
selection problems. MUTRISS calculates the areas occupied by alternatives in n-dimensional space, employing 
analytic geometry and converting each alternative into n-edges forms. The paper applies MUTRISS to three 
material selection case studies, with Ti-6Al-4V, Material 4, and AISI 4140 Steel- UNS G41400 emerging as the 
best materials for the three examples with the highest overall scores of 0.036, 4.540 and 0.427 respectively. The 
results are compared with various MCDM methods through four statistical measures, including relative closeness 
ratio, robustness analysis, compromise ranking coefficient, and similarity degree. The measures focus on 
different aspects of MCDM methods in solving problems and their results. The paper concludes that MUTRISS 
offers a more robust and reliable approach for material selection problems compared to other MCDM methods, 
with the first scenario of MUTRISS being more reliable than the second scenario. The paper also emphasizes the 
importance of validating results in material selection problems due to the potential irreversible consequences of 
selecting the wrong material.   

Nomenclature. 
As scientific papers usually employ several symbols and notations for 

the vectors, matrices, and random variables. The conventions applied in 
this paper are displayed in (Table 1). 

1. Introduction 

The need to survive in the manufacturing industry has driven orga
nizations to create high-quality, affordable products with improved 
performance. The development of numerous new materials in recent 

years has led to the replacement of the earlier available materials. Due to 
poor material selection, many excellent designs are never realized. For 
any design to be reliably manufactured, the choice of an acceptable 
material or material combinations is therefore very essential. Addi
tionally, competition between industries is growing as a result of the 
constantly shifting customer demands, both to increase market share 
and to preserve the environment for coming generations. Although 
material selection can be made at any point during the life cycle of a 
product, it is often done during the initial design phase. Engineering 
design addresses the issue of ongoing improvement through improved 
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design and does so using both the currently accessible materials and 
novel material combinations. Design engineers are faced with the 
dilemma of selecting the best appropriate material to fulfill the needs of 
a product design due to the availability of numerous materials with 
various qualities. 

There are cases where design requirements and objectives may 
conflict, and it becomes necessary to prioritize certain features over 
others. The high accretion of several factors for product performance, 
including dependability, safety, strength, environmental friendliness, 
energy-saving qualities, and economic considerations, further increase 
the selection process’s complexity. Design engineers constantly strive 
for a compromise between these factors and the demands of end cus
tomers who will pay for the product in the face of such growing 
complexity. In order to find the appropriate material, a systematic 
process must be followed; otherwise, an unsuitable design might result 
in a catastrophic product collapse, which can occasionally be lethal as 
well. In order to choose the best material for a particular product, it is 
necessary to compare the attributes of a limited number of materials. 
Nevertheless, when selecting a material for an engineering application, 
the designers frequently use trial-and-error techniques or rely on their 
expertise and experience, which may be ineffective in any given situa
tion. The oldest and most straightforward approach for selecting an 
appropriate material is the conventional selection method, which is 
based on receiving the required information, e.g., the materials’ phys
ical properties and performance attributes, from material manufac
turers, suppliers, and standards (Şensoy et al., 2019). In order to achieve 

consistency between design, manufacturing objectives, functions, shape, 
process, and materials, it is required to choose the optimal material for a 
given application using an organized and efficient strategy. The pro
cedure of choosing a material for a particular component is frequently 
challenging and time-consuming due to the abundance of materials and 
the intricate interactions between many selection characteristics. Ac
cording to İpek et al., (2013), selecting the appropriate material from a 
database with over 100,000 alternatives requires an advanced system 
due to the complexity of the material selection process. In general, the 
selection of materials for a given product embraces two main phases, 
including the investigation/evaluation of product requirements and the 
selection of the best alternative material (Mousavi-Nasab and Sotoudeh- 
Anvari, 2017). Due to the enormous number of available engineering 
materials and their diverse production technologies, the selection pro
cess can be regarded as a complex decision-making task requiring a 
systemic mathematical approach to simplify (Hafezalkotob and Hafe
zalkotob, 2015). As a result, choosing the best material for a given 
application typically involves choosing the best possible combination of 
properties rather than just one, which makes it a multi-criteria decision- 
making (MCDM) problem. To select an appropriate material, Findik & 
Turan. (2012) mentioned three main methods, including: 1. the cost per 
unit property method; 2. the limits on properties method, and 3. the 
weighted property index method, which the latter functions similar to 
the simple additive weighting (SAW) MCDM method. Abishini and 
Karthikeyan (2023) argued that MCDM methods are employed to select 
the optimum material from a list of candidate materials selected for the 
specific product requirements with conflicting multiple attributes, lim
itations, or preferences. MCDM methods split alternatives into several 
aspects, attributes, and characteristics according to the number of 
criteria to run the alternatives’ evaluation process (Zakeri et al., 2022). 
Fig. 1 shows a typical material selection procedure. 

Das et al. (2016) also described the material selection as a two-step 
process in which the first step embraces the alternative generation by 
Ashby Material Selection Chart6, and the second step involves the 
application of MCDM, multi-attribute decision-making (MADM) or 
multi-objective decision-making (MODM) methods. Various methods 
for solving MCDM problems have already been developed and are 
employed in diverse material selection situations to provide optimal 
decisions. For instance, (Meng and Dong, 2022; Javaid et al., 2023; 
Kirişci et al., 2022; Singh et al., 2020) used outranking methods7, while 
compromise ranking methods are used in (Sanghvi et al., 2021), 
distance-based methods8 were employed in (Howari et al., 2023; Bhadra 
et al., 2022; Kamble et al., 2022; Subba & Shabbiruddin., 2022; Zakeri 
and Konstantas, 2022; Dhanalakshmi et al., 2020), and employed pair
wise comparison methods9 to evaluate the materials in their studies 
were used by (Chen et al., 2023; Rajput et al., 2022; Varghese and 
Karande, 2022; Mastura et al., 2022). 

Despite being essentially effective at resolving material selection 
challenges, MCDM methods have some drawbacks. Each MCDM method 
may suggest a different solution for the same selection problem since 
they all use different mathematical procedures to choose the optimal 

Table 1 
The list of symbols and notations.  

Symbol Description 

wj Criteria weights of in a decision matrix 
cj Criteria in a decision matrix 
Ai Alternatives in a decision matrix 
m Number of alternatives 
n Number of criteria 
AVi Alternative value of i the alternative in MUTRISS scenarios 
ϕ Angle between each alternative in 360-degree angle-flat space in MUTRISS 

the first scenario. 
θj Angle between alternatives in MUTRISS the second scenario 
ρki Spearman’s rank correlation coefficient between the k th and i th MCDM 

method 
q Number of MCDM methods in the Spearman’s rank correlation coefficient 

formula 
RCRκ Relative closeness ratio 
AViκ Rank of i th alternative as the output of n th MCDM method in the relative 

closeness ratio formula 
Ne Number of alternatives of e th case evaluated in the computing process the 

relative closeness ratio 
N Number of cases considered in the computing process the relative 

closeness ratio 
RCRρ

κ Total similarity 
ei Entropy of the ranks of i th alternative in the (κ) MCDM methods in the 

RCR algorithm 
RCRβ

κ Primary results of RCRκ 

RAk Robustness analysis 
RAβ

κ Primary form of the RAk in the computing process of the robustness 
analysis 

K Total number of the MCDM methods analyzed in the computing process of 
the robustness analysis 

Ne Number of alternatives of e th case evaluated in the computing process of 
the robustness analysis 

N Number of cases considered in the computing process of the robustness 
analysis 

sk Number of algorithm steps of κ the MCDM method applied on the N cases 
ϑz Ranking compromise coefficient 
Ri* Distribution values of each rank for each alternative in the computing 

process of the ranking compromise coefficient 
VRi* Value of each rank in the computing process of the ranking compromise 

coefficient 
Y Ranks’ values matrix 
ζz Compromise degree 
ηl Similarities degree of l th MCDM method  

6 See (Bird et al., 2018; Shah, 2014; Parate & Gupta, 2011).  
7 The Outranking methods compare all possible couples of alternatives in the 

decision-making matrix and determine which are preferred by systematically 
evaluating them regarding each criterion. The most well-known outranking 
method is the PROMETHEE method.  

8 Along with the pairwise comparison methods, the distance-based methods 
are probably the most popular MCDM methods. They derive at least one ab
stract alternative with the highest score, called the ideal alternative, in each 
criterion from the decision matrix and compare the distance of each decision’s 
alternative with this abstract alternative. The most famous MCDM distance- 
based methods are TOPSIS and VIKOR.  

9 These methods use pairwise comparisons as a tool to gauge the preference 
of the decision alternatives with regard to the criteria of the problem. AHP is 
the most famous pairwise comparison method. 
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alternative (Triantaphyllou and Mann, 1989). The aforementioned 
variations in the outcomes produced by various MCDM methods arise as 
a significant issue in material selection applications where poor judg
ments carry high levels of risk and frequently end in unrecoverable 
scenarios. Differences in rankings obtained by various MCDM methods 
for the same material selection problem may be found in (Bhadra et al., 
2022; Nguyen et al., 2022; Zhang et al., 2020a; Zhang et al., 2020b; 
Singh et al., 2020; Mousavi-Nasab and Sotoudeh-Anvari, 2017; Hafe
zalkotob and Hafezalkotob, 2015). According to Tscheikner-Gratl et al. 
(2017), the results of different MCDM methods might not be comparable 
for the same case study because of the selected score scales and conse
quent distributions of scores within the criteria. According to Zanakis 
et al. (1998), the four leading causes of inconsistent outcomes produced 
by MCDM methods are as follows: (i) different weights are used in the 
calculations between the methods. (ii) different algorithms take 
different approaches to choose the best solution; (iii) several algorithms 
try to scale the objectives, which has an impact on the predetermined 
weights; (iv) some algorithms introduce additional parameters that have 
an impact on the solution to be chosen. The weights of criteria and the 
principles that MCDM methods use for their alternative evaluation 

process are the most crucial components that directly influence the 
outcome of any MCDM method. No ranking system is aimed at explicitly 
taking the knowledge of the decision-makers (DMs) into account. In 
most MCDM methods, the primary responsibilities of DMs are limited to 
identifying potential alternatives with criteria values and criteria 
weights. Due to the DMs’ ineptitude, which muddies the results, the 
latter has always been of severe concern. When several MCDM methods 
yield comparable rankings, even the numerical ratios between the al
ternatives do not match. When several alternatives need to be consid
ered, and the ratio used to choose a set of alternatives is crucial, this 
problem becomes vital. Another issue arises when DMs need to validate 
their results, and the rankings produced by various MCDM methods are 
not comparable. In this case, statistical measurements are necessary to 
validate the results. It is crucial to employ a method that optimizes 
material selection decisions and minimizes the risk of poor selection 
because appropriate material selection results in improved quality and 
enhanced product life cycle. In contrast, inaccurate selection leads to 
increased design cost, lack of productivity, the poor performance of the 
end product, critical component damage, and, eventually, untimely 
product failure (Patnaik et al., 2020). According to the issues mentioned 

Fig. 1. A typical material selection process.  
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above, by proposing a new MCDM method and a number of statistical 
measures, this paper aims to focus on the following: 1. better perfor
mance compared to other MCDM methods in ranking materials in a 
material selection problem, theoretically and mathematically, in the 
presence of decision-makers different levels of access to the complete 
information; 2. addressing the lack of the current MCDM algorithms’ 
outputs validation approaches. As a novel MCDM method, MUltiple- 
TRIangles ScenarioS (MUTRISS) exercises analytical geometry con
cepts and applies the two scenarios, the proposed method seeks to offer 
accurate solutions that minimize the risk of poor selection in the ma
terial selection problems through robust yet simple algorithmic steps. It 
also offers unique processes for decision-makers with different infor
mation access levels. The benefits derived from this paper in proposing 
solutions for solving material selection problems address primarily the 
risk of wrong selection, which leads to unpredictable and irreversible 
consequences that are challenging to manage in most cases. The mea
sures proposed in this paper provide assistance in validating the outputs 
of MCDM methods, and can be applied to the validation of results from 
any MCDM method. These issues are not commonly addressed in the 
literature, and previous studies have not provided solutions to these 
problems, thus making use of the contributions of this paper vital for 
solving material selection problems, as well as for the validation of 
MCDM methods in general. The remainder of this paper is organized as 
follows: The MUTRISS method is presented as a new MDCM method in 
Section 2. In Section 3, three cases of material selection problems are 
presented. In the fourth section, results obtained from MUTRISS sce
narios and different MCDM methods are compared comprehensively. 
Finally, conclusions and suggestions for future research are presented in 
Section 5. 

2. MUTRISS method 

The MUTRISS method is suggested in this study to overcome the 
drawbacks of current MCDM methods, such as inconsistent rankings, 
selecting several alternatives as the best choice, and ignoring the 
involvement of DMs in the decision-making process. According to the 
level of knowledge that the DM(s) have regarding the criteria, the 
MUTRISS method is designed in two alternative scenarios to address 
material selection challenges. The descriptions below include alterna
tives for the materials that could be used to solve the material selection 
problems under consideration, and the criteria refer to the variables that 
DMs use to assess the potential materials. 

2.1. MUTRISS the first scenario 

In the first scenario, DMs lack complete information about the al
ternatives and criteria due to the availability of partial information 
about criteria weights. An MCDM method evaluates alternatives against 
the criteria in an n-dimensional space (where n is the number of 
criteria), i.e., each alternative occupies a specific space as a multidi
mensional shape in the n-dimensional space. This is because the 
Euclidean space is formed/limited by points that architect a multidi
mensional object. MUTRISS calculates the areas of these new shapes 
after converting the multidimensional shapes in the first scenario into bi- 
dimensional shapes surrounded by (Cj) and (Cj+1) dimensions where (j +
1 ≤ n), then calculates the areas of these new shapes, as shown in Fig. 2. 

After the normalization process, the first scenario of MUTRISS cal
culates each alternative area as an n-edges shape using the concept of 
irregular polygons. Every mentioned irregular polygon is built on mul
tiple triangles (Fig. 3). To calculate the area, MUTRISS estimates the 
area of n-triangles. The alternative with the highest corresponding value 
of area is selected as the best alternative, i.e., the alternative which oc
cupies the most area in the n-dimensional space is considered to be the 
best one. 

The three-step MUTRISS algorithm is arranged according as follows: 
Step 1. To keep the value of each side between 0 and 1, where 

(0 < xij ≤ 1), the first step of the proposed algorithm is the normaliza
tion of the decision matrix with respect to (Eqs. (1), 2) and converting it 
into a beneficial matrix, in which the highest value is favorable. In the 
equations, (X = xij) denotes the decision matrix. 

Fig. 2. Alternatives in a bi-dimensional space and as an n-edges shape.  

C1

C2

Cn-1

Cn

A m-1

Fig. 3. Area of (Am− 1) alternative: each alternative includes (n) triangles.  
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For the beneficial attributes/criteria: 

xij =
xij

max
1≤j≤n

xij
, i = 1,⋯,m (1) 

For the non-beneficial (cost) attributes: 

xij =

min
1≤j≤n

xij

xij
, i = 1,⋯,m (2) 

In contrary to beneficial attributes, a lower value is favorable for 
non-beneficial (cost) attributes. 

Step 2. Establishing weighted decision matrix using Eq. (3). 

rij = wj (3)  

where wj = {w1,⋯,wn} are the weights of criteria which can be ob
tained from the MCDM subjective weighting methods, or can be calcu
lated by the MCDM objective weighting methods. 

Step 3. Computation of the value for the i th alternative using Eq. (4), 
where (ϕ) is the angle between each alternative in a 360-degree angle- 
flat space and (ϕ = 360

n ). 

AVi =

((
∑n

j=1
rij × r(i(j+1) )

)

+(r1 × rn)

)

× sinϕ0.5j+ 1 ≤ n (4) 

When (AVi) is higher, the ranking order of the alternative is better. 

2.2. MUTRISS the second scenario 

When DMs have access to complete information about criteria 
weights, the second scenario of MUTRISS is to be adopted. Analogous to 
the first scenario, the second scenario is also based on calculating areas 
of triangles which are restricted in a numerical interval, as shown in 
Fig. 4. 

The weight of each criterion plays the most important role in the 
second scenario. In a 90-degree Euclidean subspace (see Fig. 4), each 
weight is proportionate to the corresponding angle, where (

∑n
j=1wj =

1), (b = xmnmin ) and (
∑n

j=1θj = 90′

, j = {1,⋯, n − 1}). 
Algorithm of MUTRISS the second scenario for the i th alternative is 

presented in the following steps: 
Step 1. Normalizing the decision matrix using Eqs. (1) and (2). 
Step 2. Arranging each (xj) of i th alternative in their descending order 

as the following equation: 

xij : xmnmax →xij→xmnmin = {xmnmax , xmnmax − 1,⋯, xmnmin− n , xmnmin} (5) 

Step 3. Constructing triangles in a 90-degree angle flat space, where 
(xmnmin ) is an abstract axiom that the adjacent side of a right-angled tri
angle is located on it, and (xmnmin− n ) and (b) are the hypotenuse and 
adjacent side respectively (see Fig. 4). To calculate each triangle, 
MUTRISS deals with trigonometric ratios. 

- To calculate angle between alternatives, the second scenario uses 
the following equation, where the number of constructed angles is n − 1, 
and which equation is developed in order to calculate each angle of the i 
th alternative. 

θj = wxij*

(
wxij* − 1

)− 1
(∑

wxij*

(
wxij* − 1

)− 1
)− 1

× 90, j = {1,⋯, n − 1} (6)  

xij* > xij* − 1 

For instance: 

θn− 1 = wxmnmin− n

(
wxmnmin

)− 1(∑
wxij*

(
wxij* − 1

)− 1
)− 1

× 90 (7)  

where xij* and xij* − 1 stands for two edges of the triangle. 
With respect to (xj) and (wj), [θ1, θn− 1] is the numerical interval of 

angles, where θ1 is the angle between (xmnmax ) and (xmnmax − 1) while the 
(xmnmax ) and (xmnmax − 1) refer to the highest and second highest values of 
(xj) of the i th alternative respectively. (xmnmin ) stands for the lowest value 
of (xj) of the i th alternative. In contrast to existing MCDM methods, the 
second scenario of MUTRISS does not analyze the weighted normalized 
matrix, and the weights do not make direct impact on the normalized 
decision matrix (xij). However, the area of each triangle is the space 
where the impact of the weights becomes visible. 

Step 4. The final step is calculation of overall score of the alternatives 
with the computation of areas alternatives occupy according to the 
following equation. 

AVi =
∑n

j=1
xij* xij* − 1sinθj0.5 (8) 

In line with (AVi), the alternatives are arranged in descending order. 
The flow chart of MUTRISS and how it splits into two different sce

narios are displayed in Fig. 5. The difference between the two scenarios 
can be found in Eqs. (8) and (4). In the first scenario, the range of angles 
rises until it reaches 360 degrees, when no complete information is 
readily available. The second case, on the other hand, results in a lesser 

0
Fig. 4. Portrait of second scenario of MUTRISS.  
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angle range of 90 degrees. Furthermore, due to incomplete information 
in the first scenario, the angles are assumed to be equal, whereas, in the 
second scenario, the weight determines the areas of the triangles. When 
DMs only have access to partial information, the first scenario can be 
employed; otherwise, the second scenario should be applied. As a result, 
DMs use the information at their disposal to calculate criteria weights 
more precisely than in the first scenario. The knowledge of DMs will 

always be ambiguous, and they frequently have imperfect knowledge, 
incomplete facts, or incomplete opinion. Thus, the first scenario can be 
effectively employed to define the problem for determining the ranking 
of alternatives in such circumstances, as illustrated in Fig. 6. 

Start

Assessing the knowledge/ access to the 
information regarding the importance of 

criteria or performance of materials against 
criteria

Complete 
information

Incomplete 
information

Normalizing the material 
selection decision matrix

Establishing weighted 
normalized matrixConstructing triangles in a 

90-degree angle flat space

Arranging each material’s 
performance against each 

criterion in descending order

Transforming the decision 
matrix into multiple 

triangles

Computing the angle 
between the triangles.

Computing the angle 
between the triangles.

Computing the areas each 
material occupies with 

computing the triangles’ areas

Computing the areas each 
material occupies with 

computing the triangles’ areas

Ranking materials 
according to higher areas 

they occupied 
End

Ranking materials 
according to higher areas 

they occupied 

Fig. 5. Flow chart of MUTRISS process.  
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3. Application of MUTRISS in material selection problems 

In order to demonstrate the potential use of the MUTRISS method 
employing both scenarios, three case studies have been taken into 
consideration in this section. The first scenario of MUTRISS is applied to 
two examples, including a material selection problem for a cryogenic 
storage tank and a product for a high-temperature, oxygen-rich envi
ronment. The second scenario of MUTRISS is applied to select the best 
piston material for a given case study. 

3.1. Example 1- cryogenic storage tank material selection 

The first example is taken from Rao (2006) with the intention of 
evaluating seven alternative materials. It involves choosing the best 
material for a cryogenic storage tank for the transformation of nitrogen 
liquid while taking into account seven material selection criteria, 
including toughness index (TI), yield strength (YS), Young’s modulus 
(YM), density (D), thermal expansion coefficient (TE), thermal con
ductivity (TC), and specific heat (SH). TI, YS, and YM are among the 
beneficial criteria (higher values are desirable) while the others are non- 
beneficial (cost) and call for lower values. In this problem, criteria 
weights are given as wTI = 0.28, wYS = 0.14, wYM = 0.05, wD = 0.24, 
wTE = 0.19, wTC = 0.05, wSH = 0.05. The material selection decision 
matrix is shown in Table 2. 

3.2. Example 2 – Material selection for high-temperature oxygen-rich 
environment 

The problem of selecting the best work material for a unique product 
that has to be developed to operate in a high-temperature, oxygen-rich 
environment is the second example of material selection case study 
(Chatterjee et al., 2011). The problem has six alternative materials, each 
of which is assessed by four material selection criteria like hardness (H), 

machinability rating of the work material based on cutting speed (M), 
material cost (C), and corrosion resistance (CR). C is the only non- 
beneficial criterion for this problem. Criteria weights are given as wH =

0.2362, wM = 0.2663, wC = 0.3042, wCR = 0.3042. The material se
lection decision matrix is shown in Table 3. 

3.3. Example 3 – piston material selection 

This example focuses on a piston material selection problem. Eight 
criteria are considered in order to select the best material out of the 
following alternatives: Aluminum 2618-T61, UNS A92618, Aluminum 
4032-T6, UNS A94032, Aluminum A360.0-F Die Casting Alloy, UNS 
A13600, Aluminum 6061-T6, UNS A96061, Gray Cast Iron, SAE G4000, 
UNS F10008, AISI 8660 Steel/A332, UNS G86600 and AISI 4140 Steel. 
The minimum value is preferred over the non-beneficial (cost) criteria of 
density (g/cc) and cost ($/kg). Benefit criteria that call for higher values 
include Knoop Hardness (HK), Yield strength (MPa), Modulus of elas
ticity (GPa), Specific Heat Capacity (J/g-◦C), Machinability (percent), 
and Fatigue Strength (MPa). The decision matrix, including criteria 
weights and performance of alternatives against the criteria is given in 
Table 4. DMs have access to complete information regarding the criteria 
for this example. In order to determine criteria weights, logarithm 
methodology of additive weights (LMAW), developed by Pamučar et al. 
(2021), is adopted here due to its sound performance in generating 
stable results. Expert opinions of Table 5 are used in LMAW method for 
further analyses. In the process of weight determination, nine linguistic 
variables and their corresponding numeric values are adopted as shown 
in Table 6 and the corresponding final weights are given in Table 7. 

4. Results and discussions 

The two MUTRISS situations are now compared with other MCDM 
methods in a variety of ways. This section has two sub-sections since the 
architecture of the two scenarios differs, and they have been used with 

                                  

Partial information/ 
incomplete knowledge

Perfect information/ 
complete knowledge

MUTRISS the first scenario

MUTRISS the second 
scenario

Group decision-making Individual decision-making

Fig. 6. Relationship between the levels of DM(s)’ information/knowledge and MUTRISS scenarios.  

Table 2 
Decision matrix for example 1 (Rao, 2006).  

Material TI YS YM D TE TC SH 

Al 2024-T6 75.5 420 74.2  2.8  21.4  0.37  0.16 
Al 5052-O 95 91 70  2.68  22.1  0.33  0.16 
SS 301-FH 770 1365 189  7.9  16.9  0.04  0.08 
SS 310-3AH 187 1120 210  7.9  14.4  0.03  0.08 
Ti–6Al-4V 179 875 112  4.43  9.4  0.016  0.09 
Inconel 718 239 1190 217  8.51  11.5  0.3  0.07 
70Cu-30Zn 273 200 112  8.53  19.9  0.29  0.06  

Table 3 
Data for example 2 (Chatterjee et al., 2011).  

Material H M C CR 

Material 1 420 25 5  0.865 
Material 2 350 40 3  0.665 
Material 3 390 30 3  0.745 
Material 4 250 35 1  0.665 
Material 5 600 30 2  0.665 
Material 6 230 55 4  0.5  
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Table 4 
Data for example 3.  

Material Density(g/ 
cc) 

Knoop Hardness 
(HK) 

Yield 
strength 

Modulus of 
elasticity 

Specific Heat 
Capacity 

Cost Machinability Fatigue 
Strength 

Aluminum 2618-T61, UNS A92618  2.76 144 372 74.5  0.875 2.94 320 90 
Aluminum 4032-T6, UNS A94032  2.68 150 317 78.6  0.85 2.80 70 110 
Aluminum A360.0-F Die Casting Alloy, 

UNS A13600  
2.68 97 165 71  0.963 4.11 50 150 

Aluminum 6061-T6, UNS A96061  2.7 120 276 68.9  0.896 3.97 320 95 
Gray Cast Iron, SAE G4000, UNS 

F10008  
7.15 271 310 200  0.49 1.10 48 119 

AISI 8660 Steel/A332, UNS G86600  7.85 220 1551 205  0.475 2 55 335 
AISI 4140 Steel, UNS G41400  7.85 369 1050 205  0.561 3 65 590 
Ductile Iron grade 65–45-12, UNS 

F33100  
7.15 195 310 168  0.49 1.54 61 193  

Table 5 
Expert opinions for criteria weights.  

Expert Density (g/cc) Knoop Hardness (HK) Yield strength Modulus of elasticity Specific Heat Capacity Cost Machinability Fatigue Strength 

Expert 1 2.5  1.5 4 2 1.5  1.5 5 3.5 
Expert 2 3  1.5 4 2.5 1.5  1.5 5 4.5 
Expert 3 3.5  1.5 4 2.5 1  1.5 4 5 
Expert 4 3  1.5 4 2 1.5  1.5 5 3  

Table 6 
Linguistic variables and their equal numeric values.  

Linguistic 
variable 

Absolutely low 
(AL) 

Very low 
(VL) 

Low 
(L) 

Medium low 
(ML) 

Equal 
(E) 

Medium high 
(MH) 

High 
(H) 

Very high 
(EH) 

Absolutely high 
(AH) 

Scale value (1–5) 1  1.5 2  2.5 3  3.5 4  4.5 5  

Table 7 
Final criteria weights.  

Criteria Density (g/cc) Knoop Hardness (HK) Yield strength Modulus of elasticity Specific Heat Capacity Cost Machinability Fatigue Strength 

wj  0.139  0.085  0.162  0.116  0.078  0.085  0.17  0.16  

TI

YS

YM

D TE

TC

SH

Al 2024-T6

Al 5052–O

SS 301-FH

SS 310-3AH

Ti–6Al–4V

Inconel 718

70Cu–30Zn

Fig. 7. Corresponding triangles for material alternatives in the first example.  
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various examples. Each subsection focuses specifically on one scenario 
and discusses each scenario’s similarity, differentiation, and reliability 
individually. 

4.1. Application of the first scenario of MUTRISS 

The first scenario of MUTRISS is applied to two cases of material 
selection, and results are compared with COPRAS, EVAMIX, SAW, AHP, 
and TOPSIS methods. Figs. 7 and 8 show the intuitive structures that the 
MUTRISS method uses to calculate AVi of each alternative in the 
aforementioned material selection problems. Several triangles that are 
shaped for each material are displayed in these figures. In the space of 
(7×7) areas, where m and n are both 7, each material has taken up an 
area. The larger triangle area in each figure indicates the material that 
should be selected as the best alternative. 

MUTRISS contains data points that indicate the value of a material 
with regards to specific criteria used to solve material selection prob
lems. As each data point corresponds to a different material property and 
criterion, the values are rescaled and adjusted to a uniform range of 0 to 
1. MUTRISS method consists of a cluster of points arranged in an 
irregular shape which reflects the total scores of each material in the 
selection matrix. The shape is comprised of multiple triangles, and the 
size of each triangle must be computed to determine the material with 
the highest priority and score. A larger area in the MUTRISS denotes a 
material with a superior ranking. Fig. 7 displays seven points used to 
construct the geometries, and Ti-6Al-4V exhibits the largest area, indi
cating that it is the optimal material (as shown in Table 10). The shapes 
in Fig. 8 are constructed around four points that represent four criteria 
and the corresponding values of each material for those criteria. Mate
rial 4 has the largest area among the six shapes in Fig. 8, making it the 
most appropriate alternative for the considered problem (as given in 
Table 11). 

According to (Eq. (4)), the following instances are provided in 
Table 8 and 9 to show the computation of AVi. 

Results of COPRAS, EVAMIX, SAW, AHP, TOPSIS and MUTRISS the 
first scenario for the considered two material selection problems are 
demonstrated in Tables 10 and 11. 

Ranking performances of the considered MCDM methods for the two 
material selection case studies are inclusively shown in Figs. 9 and 10, 

respectively. 
There is a significant variation in the overall ranks obtained by each 

MCDM method, as shown in Fig. 9. While SS 301-FH was chosen as the 
best material by COPRAS, EVAMIX, and SAW methods, it was placed in 
the 2nd position by the first scenario of MUTRISS and ranked 6th by 
TOPSIS and AHP. This indicates a considerable discrepancy in ranking 
order. In the second example (Table 11) and (Fig. 12), the first three 
ranks have been compromised. The fifth material was chosen as the best 
material by four MCDM methods. In contrast, the first scenario of 
MUTRISS and SAW showed that the fourth material (Material 4) is the 
best alternative and the fifth material is the second best. Less inconsis
tency exists between rankings in this second example than in the first. 
Upon closer examination of the decision matrices for the two case 
studies, it becomes evident that Ti-6Al-4V is unquestionably the best 
material for the first case study, while Material 4 is the superior choice 
for the second case study. This confirms the reliability and accuracy of 
the results generated by MUTRISS. Even though the first scenario of 
MUTRISS calculates the triangle-shaped areas to determine the best 
alternative from the decision matrix, it is a matrix-based decision model 
due to its first two phases. MUTRISS, a matrix-based decision-making 
tool, easily handles subjective and objective criteria. Both MUTRISS 
scenarios are more effective with physical attributes than values 
expressed qualitatively, just like other matrix-based MCDM methods. 
The first scenario in MUTRISS is built with a quick computation, and it 
analyses the decision matrix more straightforwardly than the second 
scenario. In fact, transparency does not change as the number of alter
natives increases since DMs can quickly identify any errors made during 
the computation process. According to Chatterjee et al. (2011), it is 
typically recommended against using an opaque, very complicated 
MCDM method because any errors made during the computation process 
can frequently result in a high level of risk and can mislead the entire 
selection process. 

4.2. MUTRISS the second scenario application 

The results of the second scenario of MUTRISS were compared with 
those obtained from other MCDM methods, including the evaluation 
based on distance from average solution (EDAS) (Dhanalakshmi et al., 
2020; Bagal et al., 2021), additive ratio assessment (ARAS) (Marichamy 

H

M

C

CR

Material 1

Material 2

Material 3

Material 4

Material 5

Material 6

Fig. 8. Corresponding triangles for material alternatives in the second example.  
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and Babu, 2021; Goswami and Behera, 2021), MOORA, VIKOR, CO
PRAS, TOPSIS, and SAW, in order to cover a wider range of MCDM 
methods. The results of this comparison are presented in Table 12. 
Tables 13a and 113b. 

The range of ranking distributions for each material using different 
MCDM methods are shown in Fig. 11. 

In example 3, three methods selected the seventh alternative (AISI 
4140 Steel, UNS G41400) as the best alternative. With the computation 
process of (n − 1) × m triangles areas, MUTRISS second scenario pos
sesses the most complex calculation amongst these MCDM methods. For 
instance, the following figures demonstrate the triangles that Aluminum 
2618-T61, UNS A92618 has made, where θj =

{14.9068, 21.7205, 11.1847, 12.1885, 8.9312, 8.7275, 12.3408}. 
These figures (Fig. 12) are extracted from T 13. 

The second scenario of MUTRISS computes 56 triangular areas to 
determine the best alternative, whereas SAW computes the fewest 
computations of all the MCDM methods taken into consideration. The 
second scenario of MUTRISS appears as a very trustworthy method for 
material selection based on the performance of the investigated MCDM 
methods, as indicated in Table 12. In the next part, similarities between 
the methodologies under consideration are examined. 

4.3. Performance comparison 

The performance of the proposed MUTRISS method and other MCDM 
methods are compared in the following two sub-sections. The robustness 
of MCDM methods and similarity of the results are assessed using some 
novel statistical measures. These concepts are developed to demonstrate 
the benefits of MUTRISS method (for both scenarios) in order to resolve 
the research questions that are usually associated with MCDM methods 
in terms of final rankings and outputs. 

Table 8 
Computing AV2 for SS 301-FH in example 1 with rank 2.  

wj 0.280 0.140 0.050 0.240 0.190 0.050 0.050   

Criteria TI YS YM D TE TC SH sum AVi 

SS 301-FH 0.039 0.006 0.003 0.006 0.00211 0.00075 0.011 0.067 0.026  

Table 9 
Computing AV4 for Material 4 in example 2 with rank 1.  

wj 0.2362 0.2663 0.3042 0.3042   

Criteria TI YS YM D sum AVi 

Material 4 0.017 0.037 0.067 0.030 0.151 4.540  

Table 10 
Comparative ranking for example 1.  

Material AVi MUTRISS the first scenario COPRAS EVAMIX AHP SAW TOPSIS 

Al 2024-T6  0.007 5 6 5 3 5 3 
Al 5052–O  0.007 6 7 7 7 6 5 
SS 301-FH  0.026 2 1 1 6 1 6 
SS 310-3AH  0.012 4 3 4 4 4 4 
Ti–6Al–4V  0.036 1 2 6 1 2 7 
Inconel 718  0.012 3 4 3 5 3 1 
70Cu-30Zn  0.006 7 5 2 2 7 2  

Table 11 
Comparative ranking for example 2.  

Material AVi MUTRISS the first scenario COPRAS EVAMIX AHP SAW TOPSIS 

Material 1  3.117 4 5 5 2 5 5 
Material 2  2.655 5 2 2 5 3 4 
Material 3  3.552 3 4 4 4 4 2 
Material 4  4.540 1 3 3 3 1 3 
Material 5  4.079 2 1 1 1 2 1 
Material 6  2.442 6 6 6 6 6 6  

0

1

2

3

4

5

6

7

8

MUTRISS: the first
scenario

TOPSIS COPRAS EVAMIX AHP SAW

Al 2024-T6 Al 5052–O SS 301-FH SS 310-3AH Ti–6Al–4V Inconel 718 70Cu–30Zn

Fig. 9. Comparative ranking similarity for example 1.  
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4.3.1. Performance analysis of MUTRISS’ first scenario 
In this section, Spearman’s rank correlation coefficient (Sałabun 

et al., 2020) has been used to assess how similar the applied MCDM 
methods are to the first scenario. Two novel statistical measures, call
ed the relative closeness ratio and robustness analysis, are proposed to 
compare the ranks and the effectiveness of the MCDM methods. 

4.3.1.1. Use of Spearman’s rank correlation coefficient. To show the level 
of similarity between the results of the applied MCDM methods, 
Spearman’s rank correlation coefficient is utilized here. Spearman’s 
rank correlation coefficient is a measurement tool for computing simi
larity between two sets of rankings. Average similarities between the k 
th MCDM method and other MCDM methods is calculated using Eqn. 
(9), where (q) is the number of MCDM methods, and the Spearman’s 
rank correlation coefficient (ρki) between k th and i th MCDM methods 
can be obtained using Eqn. (10), where (m) stands for number of alter
natives and (di) is the difference between two MCDM methods (Kou 
et al., 2012). 

0

1

2

3

4

5

6

7

MURTISS: the first
scenario

TOPSIS COPRAS EVAMIX AHP SAW

Material 1 Material 2 Material 3 Material 4 Material 5 Material 6

Fig. 10. Comparative ranking similarity for example 2.  

Table 12 
Comparative rankings for example 3.  

Material AVi MUTRISS’ second scenario ARAS MOORA EDAS VIKOR COPRAS TOPSIS SAW 

Aluminum 2618-T61, UNS A92618  0.359 2 8 3 3 2 1 4 3 
Aluminum 4032-T6, UNS A94032  0.248 6 5 7 7 4 5 6 7 
Aluminum A360.0-F Die Casting Alloy, UNS A13600  0.241 7 7 8 8 8 8 7 8 
Aluminum 6061-T6, UNS A96061  0.343 4 6 4 4 3 3 3 4 
Gray Cast Iron, SAE G4000, UNS F10008  0.277 5 3 5 6 7 6 5 5 
AISI 8660 Steel/A332, UNS G86600  0.346 3 4 2 2 5 4 2 2 
AISI 4140 Steel, UNS G41400  0.427 1 2 1 1 1 2 1 1 
Ductile Iron grade 65–45-12, UNS F33100  0.203 8 1 6 5 6 7 8 6  

Table 13a 
Area occupied by Alternative 1.  

Criteria Alternative 1 Weight Angle θj Radian Area 

C7 1  0.1700     
C1 0.971  0.1390  1.2230  14.9068  0.2602  0.1249 
C5 0.909  0.0780  1.7821  21.7205  0.3791  0.1633 
C2 0.390  0.0850  0.9176  11.1847  0.1952  0.0344 
C6 0.374  0.0850  1.0000  12.1885  0.2127  0.0154 
C4 0.363  0.1160  0.7328  8.9312  0.1559  0.0105 
C3 0.240  0.1620  0.7160  8.7275  0.1523  0.0066 
C8 0.153  0.1600  1.0125  12.3408  0.2154  0.0039  

Table 13b 
Similarities of ranking between MUTRISS first scenario and COPRAS, EVAMIX, 
AHP, TOPSIS and SAW methods.  

Example COPRAS EVAMIX AHP SAW TOPSIS 

1  0.839  0.089  − 0.054  0.982  − 0.696 
2  0.714  0.714  0.543  1.000  0.829  

Fig. 11. Comparative ranking similarity for example 3.  
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ρk =
1

q − 1
∑q

i=1,i∕=k

ρki, k = 1, 2,⋯, q (11) 

Where 

ρki = 1 −
∑

(di)
2

m(m2 − 1)
, − 1 ≤ ρki ≤ 1 (12) 

Higher agreement amongst the MCDM methods is indicated by a 
larger value of (ρki). In the two examples offered, similarities between 
the MUTRISS first scenario and other MCDM methods are shown in T 13. 
According to this table, results of the first scenario are the most com
parable to those of the SAW method than other MCDM methods. 
Table 14 shows the Spearman’s rank correlation coefficient for each 
MCDM method with the first scenario of MUTRISS. 

4.3.1.2. Relative closeness ratio. The relative closeness ratio (RCR), 
represented as (RCRκ), has been defined to analyze the similarity be
tween each MCDM method in more than one example. RCR adheres 
pairwise comparison logic (Table 15) and adopts Shannon entropy to 
compute irregularities in the ranking process for each method addi
tionally, where AViκ is the rank of the i th alternative as the output of the 
n th MCDM method, (k) represents the number of MCDM methods 

analyzed in the process, where i = 1, 2, ⋯, m, and κ ∈ {1,2,⋯}. The 
following equations illustrate (RCRκ) process, where (0 ≤ RCRκ ≤ 1), Ne 
stands for the number of alternatives of e th case evaluated in the process, 
Ce signifies the number of alternatives of e th case evaluated in the 
process, N states the number of cases considered in the process, and 
RCRρ

κ symbolizes total similarity. Tables 16-18. 

where 

ei = −
1

logκ
∑m

i=1

(
∑κ

1

AViκ

AVi1
+
∑κ

1

AViκ

AVi1

)

ln

(
∑κ

1

AViκ

AVi1
+
∑κ

1

AViκ

AVi1

)

(14)  

Fig. 12. Different triangles occupied by Aluminum 2618-T61, UNS A92618.  

Table 14 
Spearman’s rank correlation coefficient between different MCDM methods.  

Example MUTRISS 
first 
scenario 

COPRAS EVAMIX AHP SAW TOPSIS 

1  0.2321  0.3821  0.2250  0.0036  0.3036  − 0.2679 
2  0.5600  0.5943  0.5714  0.6171  0.5714  0.6286  

Table 15 
Pairwise comparison of the output of each method for i th alternative.  

Ai MCDM method1 ⋯ MCDM Mthodκ 

MCDM method1 1 ⋯ AVi1

AViκ 
⋮ ⋮ 1 ⋮ 
MCDM methodκ AViκ

AVi1  

⋯ 1  

Table 16 
Comparison between outputs of each MCDM method to computeRCPκ  

MCDM method A1 ⋯ Am 

MCDM method1    

⋮    
MCDM methodκ     

RCRκ = 1 −
∑m

i=1
RCRβ

κ

(
∑κ

1

AViκ

AVi1
+
∑κ

1

AViκ

AVi1

)(
∑m

i=1

∑m

i=1
RCRβ

κ

(
∑κ

1

AViκ

AVi1
+
∑κ

1

AViκ

AVi1

))− 1

(13)   
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RCRβ
κ = 1 − ei

(
∑m

i=1
(1 − ei)

)− 1

(15) 

And the total similarity is computed as follows (Eq. (14)). 

RCRρ
κ =

(

1 −

(

N− 1
∑N

1
RCRκ

Ne

Ce

)(
∑N

1
N− 1

∑N

1
RCRκ

Ne

Ce

)− 1)

× 100

(16) 

In the RCR algorithm, (ei) stands for the entropy of the ranks of the i 
th alternative in the (κ) MCDM methods, and (RCRβ

κ) indicates the pri
mary results of (RCRκ). RCRκ value of each method for each example is 
shown in Tables 19 and 21 respectively. These tables signify that 
MUTRISS shows more resemblance to SAW and EVAMIX methods than 
other MCDM methods employed in this paper. Total similarity of each 
MCDM method for the adopted two examples is given in Table 19. 
Figs. 13 and 13 compare the total difference and the degree to which the 
results of each MCDM method are similar to those of other MCDM 
methods. TOPSIS and AHP have the biggest difference, making their 
outputs the least reliable among the considered MCDM methods while 
MUTRISS has the least difference, as shown in Fig. 14. 

4.3.1.3. Robustness analysis. To analyze robustness of the results of a 
specific MCDM method on more than one case in comparison with other 
MCDM methods, an analytical technique called robustness analysis (RAk) 
is proposed in this paper. Larger value of RAk indicates more robustness 
of an MCDM method in its algorithm and process. Equations of RAk are 
as follows: 

RAβ
κ =

(
∑k

1
RCRκ

(
N
∑

Ne

)− 1
)(

∑k

1

(
∑k

1
RCRκ

(
N
∑

Ne

)− 1
))− 1

(17)  

RAk =

(

RAβ
κ −

(
∑k

1
RCRκN(K)

− 1

))

(sk)
− 1 (18) 

(RAβ
κ) expresses the primary form of RAk. 

(K) stands for total number of MCDM methods under consideration. 

(Ne) stands for the number of alternatives of e th case evaluated in the 
process. 

(N) states number of cases considered in the process. 
(sk) is the number of algorithm steps of κ th MCDM method applied 

for N cases. 
Results of the robustness analysis for each MCDM method is 

exhibited in Table 20. 
When compared to the other MCDM methods, it is perceived that 

simpler algorithms of the MUTRISS and SAW methods demonstrated 
greater robustness in the decision-making processes, as shown in 
Table 20. 

4.3.2. Performance analysis of MUTRISS second scenario 
A piston material selection problem has been addressed using the 

second scenario of MUTRISS method. Compromise ranking coefficient, 
compromise degree, and similarities degree have been introduced in 
order to evaluate the ranking performance of the considered MCDM 
methods and also to measure similarities between them. In order to fully 
understand the distinct conditions in terms of access to information, the 
first scenario has purposefully not been adopted to this case study. 

4.3.2.1. Compromise ranking coefficient. In order to compare the per
formances of different MCDM methods when they are applied to the 
same case study, a new performance indicator called the compromise 
ranking coefficient is introduced here. This approach works by 
analyzing the correlation between the derived ranks from various 
MCDM methods. 

The following steps demonstrate the calculation process of this co
efficient. Higher value of compromise ranking coefficient shows better 
performance of an MCDM method. 

Step 1. Establishing the comparative ranking matrix. 
Step 2. Compute distribution of ranks for each alternative generated 

by the MCDM methods (as shown in Table 21). 
Step 3. Compute the value of each rank for each alternative using 

Eqn. (17), where Ri* , VRi*
, and m stand for the distribution values of each 

rank for each alternative, the value of each rank, and number of the 
problem alternatives, respectively. 

VRi*
=

Ri*

m
× 100, i* = {1, 2,…,m} (19) 

Step 4. Convert the comparative ranking matrix into the rank value 
matrix (as shown in Table 22) which is constructed based on m alter
natives and l MCDM methods, where l ∈ z and z = {1,2,⋯, l}, where Y 
stand for the ranks’ values matrix. 

Table 17 
Example 1: Comparison between outputs of each MCDM method in each alternative, andRCPκ  

MCDM method Al 2024-T6 Al 5052-O SS 301-FH SS 310-3AH Ti-6Al-4V Inconel 718 70Cu-30Zn RCPκ 

MUTRISS  12.57  12.1  20.33  12.08  22.31  13.68  17.47  0.9923 
TOPSIS  13.3  12.41  28.67  12.08  25.88  21.45  16.47  0.9990 
COPRAS  13.1  12.16  20.33  12.42  16.12  14.55  14.93  0.7056 
EVAMIX  12.57  12.16  20.33  12.08  23.02  13.68  16.47  0.9988 
AHP  13.3  12.16  28.67  12.08  22.31  16.05  16.47  0.6215 
SAW  12.57  12.1  20.33  12.08  16.12  13.68  17.47  0.6829  

Table 18 
Example 2: Comparison between outputs of each MCDM method in each alternative, andRCPκ  

MCDM method Material 1 Material 2 Material 3 Material 4 Material 5 Material 6 RCPκ 

MUTRISS  12.7  14.12  12.5  17.33 14 12  0.5987 
TOPSIS  12.95  13.18  14.17  14.67 13 12  0.9029 
COPRAS  12.95  14.47  12.58  14.67 13 12  0.8912 
EVAMIX  12.95  14.47  12.58  14.67 13 12  0.6730 
AHP  16.1  14.12  12.58  14.67 13 12  0.9342 
SAW  12.95  12.95  12.58  17.33 14 12  1.0000  

Table 19 
Total similarity between considered MCDM methods.   

MUTRISS COPRAS EVAMIX AHP SAW TOPSIS 

RCPρ
κ  16.472  15.703  17.183  15.110  16.376  19.156  

S. Zakeri et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 228 (2023) 120463

14

Y = VRi* iz
; i = {1, 2,⋯,m}, z = {1, 2,⋯, l} (20) 

Step 5. Compute the compromise ranking coefficients of Table 23 
using Eqn. (19). Higher value of ϑz indicates better performance. 

ϑz =
∑m

i=1
VRi* iz

(
∑m

i=1
max
1≤z≤l

VRi* iz

)− 1

× 100 (21)  

4.3.2.2. The similarity degree. One of the by-products of compromise 
ranking coefficient is the compromise degree which indicates similar
ities between MCDM methods (see Table 24). The compromise degree is 
calculated using the following equation, where ζz indicates compromise 
degree. 

ζz =
∑m

i=1
VRi* iz

(

max
1≤z≤l

VRi* iz

)− 1

(22) 

The following equation is developed to calculate the similarity be
tween k th and l th MCDM methods, where ηl is the similarity degree of l th 

method. 

ηl =
∑l

z=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ζk − ζz)
2

√

, k, l ∈ z (23)  

ηl,k =
ηl

ηk 

Fig. 13. Similarity comparison of each MCDM method against other MCDM methods.  
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Fig. 14. Total difference between results of each MCDM method.  

Table 20 
Robustness analysis of MCDM methods applied to the material selection 
problems.   

MUTRISS COPRAS EVAMIX AHP SAW TOPSIS 

RAβ
κ  0.1590  0.1596  0.1671  0.1555  0.1682  0.1901 

RAk  0.1237  0.0414  0.0355  0.0130  0.1309  0.0634  

Table 21 
Rank distribution for alternative materials for Example 3.  

Material First rank Second Rank Third Rank Fourth Rank Fifth Rank Sixth Rank Seventh Rank Eighth Rank 

Aluminum 2618-T61, UNS A92618 1 2 3 1 0 0 0 1 
Aluminum 4032-T6, UNS A94032 0 0 0 1 2 2 3 0 
Aluminum A360.0-F Die Casting Alloy, UNS A13600 0 0 0 0 0 0 3 5 
Aluminum 6061-T6, UNS A96061 0 0 3 4 0 1 0 0 
Gray Cast Iron, SAE G4000,UNS F10008 0 0 1 0 4 2 1 0 
AISI 8660 Steel/A332, UNS G86600 0 4 1 2 1 0 0 0 
AISI 4140 Steel, UNS G41400 6 2 0 0 0 0 0 0 
Ductile Iron grade 65–45-12, UNS F33100 1 0 0 0 1 3 1 2  
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When ηl,k value is closer to 1, MCDM methods are more similar; if 
ηl,k = 1, it indicates exactly the same results by the considered MCDM 
methods. 

Table 24 reveals that the MUTRISS second scenario, MOORA, EDAS, 
VIKOR, TOPSIS, and SAW methods have a compromise ranking coeffi
cient of 1, signifying that they have designated AISI 4140 Steel, UNS 
G41400 as the best material in case study 3. On the other hand, the 
ARAS and COPRAS methods have much lower values (0.33) for the 
same, resulting in smaller values of ζz, i.e., 3.27 and 4.42, respectively. 
Notably, MUTRISS second scenario, along with the other methods, 
demonstrates significantly greater values of ζz. While compromise de
gree is intended to estimate similarities between MCDM methods for one 
decision-making problem, relative closeness ratio requires more than 
two cases to yield the similarities. The highest value of compromise 
ranking coefficient is observed for SAW method, which reveals that 
SAW method performs better when selecting the best material for 
Example 3, as shown in Table 24. When it came to solving the piston 
material selection problem, MOORA and EDAS methods performed well. 
When solving Example 3, the second scenario of MUTRISS and TOPSIS 
produced comparatively similar results. The compromise ranking coef
ficient indicates how well the MCDM methods perform when ranking 

alternatives only. 
Tables 25 and 26 respectively show the similarity between outputs of 

the MCDM methods. Table 26 indicates that the second scenario 
of MUTRISS and TOPSIS are quite similar having ηl,k value of 1, while it 
is less similar to ARAS and SAW methods. Utilizing the similarity degree, 
the mentioned similarity could be also observed in (Table 25) in which 
ηMUTRISS′ second scenario, ηTOPSIS = 9.32 where ARAS and SAW are illus
trating the most dissimilar results. In addition to TOPSIS, the output of 
MUTRISS’ second scenario is comparable to VIKOR and EDAS methods. 
Similar to TOPSIS, VIKOR and EDAS are the distance-based MCDM 
method. Although MUTRISS’ second scenario follows different philos
ophy compared to the distance-based MCDM methods, the comparisons, 
as provided in Tables 25 and 26 indicate the similar behavior in 
generating rankings. 

4.4. Discussions 

The success of any engineering or manufacturing project heavily 
relies on proper material selection, and the chances of selecting a suit
able material for the application can be enhanced by adopting a sys
tematic approach, resulting in improved product performance, 

Table 22 
Rank values for alternative materials for Example 3.  

Material The First 
rank 

The Second 
Rank 

The Third 
Rank 

The Fourth 
Rank 

The Fifth 
Rank 

The Sixth 
Rank 

The Seventh 
Rank 

The Eighth 
Rank 

Aluminum 2618-T61, UNS A92618 12.5 25 37.5 12.5 0 0 0 12.5 
Aluminum 4032-T6, UNS A94032 0 0 0 12.5 25 25 37.5 0 
Aluminum A360.0-F Die Casting Alloy, 

UNS A13600 
0 0 0 0 0 0 37.5 62.5 

Aluminum 6061-T6, UNS A96061 0 0 37.5 50 0 12.5 0 0 
Gray Cast Iron, SAE G4000, UNS F10008 0 0 12.5 0 50 25 12.5 0 
AISI 8660 Steel/A332, UNS G86600 0 50 12.5 25 12.5 0 0 0 
AISI 4140 Steel, UNS G41400 75 25 0 0 0 0 0 0 
Ductile Iron grade 65–45-12, UNS 

F33100 
12.5 0 0 0 12.5 37.5 12.5 25  

Table 23 
Compromise ranking coefficients for Example 3.  

Compromise ranking coefficient value MUTRISS’ second scenario ARAS MOORA EDAS VIKOR COPRAS TOPSIS SAW 

ϑz 75  40.625  90.625  87.5  68.75  56.25  78.125 100  

Table 24 
Compromise degree of each MCDM method in Example 3.  

Material MUTRISS second scenario ARAS MOORA EDAS VIKOR COPRAS TOPSIS SAW 

Aluminum 2618-T61, UNS A92618  0.67 0. 33  1.00  1.00  0.67  0.33  0.33  1.00 
Aluminum 4032-T6, UNS A94032  0.67 0.67  1.00  1.00  0.33  0.67  0.67  1.00 
Aluminum A360.0-F Die Casting Alloy, UNS A13600  0.60 0.60  1.00  1.00  1.00  1.00  0.60  1.00 
Aluminum 6061-T6, UNS A96061  1.00 0.25  1.00  1.00  0.75  0.75  0.75  1.00 
Gray Cast Iron, SAE G4000, UNS F10008  1.00 0.25  0.25  0.50  0.25  0.50  1.00  1.00 
AISI 8660 Steel/A332, UNS G86600  0.25 0.50  1.00  1.00  0.25  0.50  1.00  1.00 
AISI 4140 Steel, UNS G41400  1.00 0.33  1.00  1.00  1.00  0.33  1.00  1.00 
Ductile Iron grade 65–45-12, UNS F33100  0.67 0.33  1.00  0.33  1.00  0.33  0.67  1.00 
ζz  5.85 3.27  7.25  6.83  5.25  4.42  6.02  8.00  

Table 25 
Similarity degree of MCDM methods for Example 3.  

MCDM method MUTRISS second scenario ARAS MOORA EDAS VIKOR COPRAS TOPSIS SAW ηl 

MUTRISS’ second scenario 0 2.58 1.40 0.98 0.60 1.43 0.17 2.15  9.32 
ARAS 2.58 0 3.98 3.57 1.98 1.15 2.75 4.73  20.75 
MOORA 1.40 3.98 0 0.42 2.00 2.83 1.23 0.75  12.62 
EDAS 0.98 3.57 0.42 0 1.58 2.42 0.82 1.17  10.95 
VIKOR 0.60 1.98 2.00 1.58 0 0.83 0.77 2.75  10.52 
COPRAS 1.43 1.15 2.83 2.42 0.83 0 1.60 3.58  13.85 
TOPSIS 0.17 2.75 1.23 0.82 0.77 1.60 0 1.98  9.32 
SAW 2.15 4.73 0.75 1.17 2.75 3.58 1.98 0  17.12  

S. Zakeri et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 228 (2023) 120463

16

reliability, and longevity. In this article, MUTRISS is proposed as a new 
MCDM method to address two primary concerns in material selection 
problems. Firstly, differentiation between the results obtained using 
various MCDM methods is aimed for. Secondly, existing gaps in the 
validation of MCDM results, which are often assessed using conventional 
approaches like sensitivity analysis, Spearman correlation, or comparing 
results with those of other MCDM methods to achieve a global consensus 
on rankings, are addressed. 

In most cases, the consequences of poor material selection are 
complex and challenging to manage. Suboptimal performance and 
product failure can result from incorrect material selection, which can 
increase production, transportation, and maintenance costs. Safety is 
also a critical consideration, with materials having different properties 
like flammability and toxicity, making material selection crucial to 
ensure both product and user safety. Selecting the right material can 
increase the lifespan of any product, while a wrong selection can lead to 
premature product failure. The examples above prove the importance of 
using a proper process and tool for evaluating the material and vali
dating the results. 

Validating the results of MCDM methods in solving decision-making 
problems requires real-world experiments. However, mathematical 
tools are commonly used to verify the applicability of an MCDM method 
and confirm its results. Existing validation approaches have funda
mental problems that need to be addressed. Comparing the results of an 
MCDM method with others is a fundamental step in validating its 
output. Sensitivity analysis can also confirm the final results of MCDM 
methods by demonstrating their robustness (Mukhametzyanov and 
Pamucar, 2018). However, a significant issue with sensitivity analysis is 
adjusting the weights based on subjective judgments. Spearman’s rank 
correlation coefficient is another tool that can be used to verify the final 
findings, but it ignores the nature and structure of cases. To address 
these issues, this research introduced Robustness analysis and Relative 
closeness ratio techniques to analyze the performance of MCDM 
methods using several case studies. A coefficient known as the 
compromise ranking coefficient is also devised to quantify the relative 
performances of MCDM methods used to solve the same problem. It 
evaluates the correlation between the various rankings produced by 
other MCDM methods to determine their relative performances. 

The paper addresses the decision-making paradox by focusing on 
various aspects of an efficient MCDM method for solving material se
lection problems, such as reliability, robustness, and transparency. The 
assumption was that a method possessing these three attributes could be 
considered a proper tool for solving material selection problems. A 
fourth aspect were added to the equation to complete the measurement 
for the best tool: the ability to coverage of DMs’ different levels of access 
to perfect information. By running the comparison through different 
statistical tools on three different material selection problems, MUTRISS 
showed superiority over other MCDM methods in possessing the 
mentioned properties, which makes it a proper tool to use for solving 
material selection problems. 

5. Conclusions and future research propositions 

The MUTRISS method is proposed as a new MCDM approach for 
material selection problems. It involves two scenarios based on 
geometrical logic in a multi-dimensional space to provide accurate 
rankings. The first scenario applies when incomplete information is 
available, while the second requires complete information. MUTRISS 
employs triangles to represent material values based on criteria and uses 
the area of the shapes formed by these triangles to prioritize materials. 

The angles between the triangles are computed dynamically in the 
second scenario, while they are assumed to be equal in the first scenario. 
The MUTRISS method is compared to eight MCDM methods and found 
to be more transparent and less complex. Three examples validate the 
two scenarios and their outcomes are compared to other MCDM methods 
using various metrics including the proposed relative closeness ratio, 
robustness analysis, ranking compromise coefficient, similarity degree, 
and Spearman’s rank correlation coefficients. The results show that 
MUTRISS is similar to SAW, EVAMIX, TOPSIS, and EVAMIX in different 
scenarios. The robustness analysis shows that SAW and MUTRISS offer 
more reliable results. However, a limitation of MUTRISS is its inability to 
handle uncertain variables, which could be addressed with the use of 
fuzzy geometry. Future research should examine the applicability of 
MUTRISS to other decision-making problems and explore the integra
tion of environmental and social criteria. It is also recommended to 
expand MUTRISS to evaluate alternatives in multiple dimensions and 
integrate it with group decision-making. The accuracy of MUTRISS re
lies on accurate weight inputs and further feedback on its functioning is 
suggested. 
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