
Particle Swarm Optimization-Based Variables

Decomposition Method for Global Optimization

Khelil Kassoul1, Samir Brahim Belhaouari 2 and Naoufel Cheikhrouhou1,3

1 Geneva School of Business Administration, University of Applied Sciences Western Switzer-

land, HES-SO, 1227 Geneva, Switzerland
khelil.kassoul@hesge.ch

2 Division of Information and Computing Technology, College of Science and Engineering,

Hamad Bin Khalifa University, Qatar
sbelhaouari@hbku.edu.qa

3 IFM Business School, 1205 Geneva, Switzerland

naoufel.cheikhrouhou@hesge.ch

Abstract. The Particle Swarm Optimization (PSO) algorithm is a well-known

nature-inspired technique used to tackle complex optimization problems, widely

used by researchers and practitioners due to its simplicity and effectiveness. This

paper introduces an improved version of PSO, called Particle Swarm Optimiza-

tion-based Variables Decomposition Method (PSO-VDM), which utilizes a de-

composition technique and a semi-random initialization strategy to divide the

problem into subproblems, enhancing exploration and exploitation of the search

space. To evaluate the proposed algorithm, a comparison with seven other well-

known algorithms is conducted across 13 benchmark problems. The search per-

formance of the algorithms is analyzed using both the test of Wilcoxon signed-

rank and Friedman rank. The results of the comparisons and statistical analyses

demonstrate that the strategies employed in the PSO-VDM algorithm make a sig-

nificant contribution to the search process. These comparisons indicate that the

PSO-VDM algorithm outperforms other state-of-the-art optimization algorithms

in terms of solution quality, highlighting its potential to effectively tackle chal-

lenging optimization problems.

Keywords: Particle swarm optimization, single optimization, decomposition

method.

1 Introduction

Particle Swarm Optimization (PSO) is a popular nature-inspired optimization algo-

rithm that is used to solve complex optimization problems. It is based on the behavior

of a group of particles that move and interact with each other in a multidimensional

search space to find the optimal solution. The particles move in the search space based

on their position and velocity, which are updated at each iteration of the algorithm. The

particles are influenced by their own best position, as well as the best position of the

group, which is determined by the particle with the highest fitness value [1].

2

Due to its simplicity and versatility in tackling different types of optimization prob-

lems including multi-objective optimization [2], constraints optimization [3], and

global optimization [4], PSO has gained popularity as an optimization method and it

has been used in several fields, such as engineering design [5], financial forecasting [6],

and image processing [7]. However, it should be noted that its convergence is not al-

ways guaranteed [1]. PSO is a prevalent nature-inspired optimization method, along-

side other popular techniques like Genetic Algorithms (GA) [8], Ant Colony Optimi-

zation (ACO) [9], Firefly Algorithm (FA) [10], and Bison Algorithm [11].

This paper aims to enhance the optimization capabilities of Particle Swarm Optimi-

zation (PSO) by proposing a new variant, referred to as Particle Swarm Optimization-

based Variables Decomposition Method (PSO-VDM), which focuses on solving single-

objective optimization problems. The PSO-VDM method incorporates a decomposition

technique and a semi-random initialization of variables to facilitate more effective ex-

ploration and exploitation of the search space. By dividing the problem into smaller

subproblems, the method is able to efficiently explore the search space, thereby im-

proving the global optimization performance of PSO.

The paper is organized as follows: Section 2 presents an overview of PSO. Section

3 introduces the proposed PSO-VDM algorithm, Section 4 provides the experimental

results obtained from testing the proposed algorithm, and finally, Section 5 concludes

the paper and suggests possible directions for future research.

2 Particle swarm optimization

Inspired by the collective behavior of birds or fishes, PSO is a heuristic global opti-

mization algorithm [12]. PSO employs a swarm of particles, with each particle repre-

senting a potential solution within the search space. By simulating the social behavior

of these particles, PSO is able to effectively explore and optimize the solution space in

search of the best possible solution. The particles undergo two types of learning, cog-

nitive learning and social learning, to improve their performance. In cognitive learning,

they rely on their own experience and remember their best solution visited so far. This

is referred to as their personal best position. In social learning, they learn from other

particles in the swarm and remember the best solution found by any particle. This is

called the global best position. This dual learning approach enables the particles to con-

tinuously optimize their performance in the swarm [1].

PSO is an iterative algorithm that begins with a swarm of randomly initialized solu-

tions and searches for optima by updating iterations. Each particle in the swarm has

several parameters, including its velocity, its personal best position, and its current po-

sition [13]. Each particle's position (𝑥𝑖(𝑡)) and velocity (𝑣𝑖(𝑡)) in a d-dimensional

search space are denoted by d-dimensional vectors. These vectors serve as guides for

the particle's movement based on both individual and collective knowledge. By lever-

aging these vectors, the particles can navigate the search space and optimize their per-

formance as part of the swarm. In the original version of PSO, the position and velocity

of each particle are updated at each iteration t using the following equations:

3

 𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑟1𝑐1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡))+ 𝑟2𝑐2 (𝑝𝑔(𝑡) − 𝑥𝑖(𝑡)) (1)

 𝑥𝑖(𝑡 + 1) = 𝑣𝑖(𝑡 + 1) + 𝑥𝑖(𝑡) (2)

Where, at iteration t, 𝑣𝑖(𝑡) denotes the velocity of the 𝑖𝑡ℎ particle and is updated using

information from two sources: the particle's personal best position, denoted by 𝑝𝑖(𝑡),

and the global best position of the swarm, denoted by 𝑝𝑔(𝑡). The update also involves

two random values, 𝑟1 and 𝑟2, which follow a uniform distribution in the range of [0,1].

Additionally, the algorithm uses two acceleration constants, known as cognitive and

social parameters, denoted by 𝑐1 and 𝑐2, respectively. The original version of PSO typ-

ically employs fixed values of 2.0 for these parameters.

Shi and Eberhart [14] propose an improvement to the original PSO algorithm by intro-

ducing the concept of an inertia weight denoted as (w). The purpose of this weight is to

balance the exploration of the entire search space with the exploitation of promising

regions. Empirical results demonstrate that when the value of "w" falls within the range

of [0.8, 1.2], particles tend to search for global solutions, while values that are too small

cause particles to converge too quickly towards local optima.

 Clerc [15] proposes a way to promote the convergence of the PSO algorithm by

introducing a parameter called the constriction factor (χ). By introducing this factor, the

impact of a particle's velocity is reduced as the search progresses, which maintains a

balance between exploitation and exploration. This approach enhances the search pro-

cess by allowing the algorithm to focus on the current solution space region while still

exploring diverse regions of the solution space.

PSO has undergone various modifications and improvements since its introduction,

such as the addition of an inertia weight factor [14] as mentioned above and the propo-

sition of new strategies [16, 17]. These changes are made because the original PSO

algorithm had some limitations, including premature convergence and its restriction to

real optimization problems. In response, researchers have introduced and modified dif-

ferent parameters and aspects of the algorithm. Furthermore, the combination of PSO

with other optimization algorithms has been proposed, leading to the development of

many different variants of PSO that can be applied to solve various types of problems

across different fields. The various modifications and applications of PSO demonstrate

its versatility and potential to solve complex optimization problems.

3 Methodology

In this section, we present the developed method that aims to achieve two main ob-

jectives. The first objective is to simplify the problem by decomposing it into smaller

subproblems. To accomplish this, we divide the problem into subproblems of n varia-

bles and identify their optimal/ near optimal values within the swarm population. This

process is repeated until the full dimension of the problem is reached. The second ob-

jective is to prevent premature convergence, which is accomplished by using a jumping

technique, as proposed in [18], based on an exponential function.

4

3.1 Decomposition method

To simplify the problem, the method first identifies the optimal/near optimal values

of n variables (𝑥1, 𝑥2, … , 𝑥𝑛) among the entire size of the problem. Then, the algorithm

evaluates n additional variables (𝑥𝑛+1, 𝑥𝑛+2, … , 𝑥𝑚), where 𝑚 = 2𝑛, to determine their

optimal/near optimal values. This process reduces the problem to one with m variables

(𝑥1, 𝑥2, … , 𝑥𝑚) as illustrated in Figure 1, and the same procedure is repeated until the

full dimension of the problem is reached. Furthermore, unlike a complete random ini-

tialization of variables, our approach involves a partially random initialization tech-

nique during the update process. The variables are grouped into subproblems, allowing

for better coverage of the entire search space and ultimately enhancing the effectiveness

of the optimization process.

Fig. 1. Process of the proposed method PSO-VDM

3.2 Jumping strategy

To prevent particles from being stuck in local minima traps, the jumping strategy is

incorporated into the velocity equation. This strategy utilizes an exponential function

denoted as (𝑡). Equation (3) depict the formula of the exponential function which is

𝑥1, 𝑥2, 𝑥3, ……, 𝑥𝑛−1, 𝑥𝑛

𝑥𝑛+1, 𝑥𝑛+2,……, 𝑥2𝑛−1, 𝑥2𝑛

 …………

𝑥𝑙+1, 𝑥𝑙,……,𝑥𝑑−1, 𝑥𝑑

𝑥1
(ۂ𝑑/𝑛ہ)

, 𝑥2
(ۂ𝑑/𝑛ہ)

, 𝑥3
(ۂ𝑑/𝑛ہ)

,……,𝑥𝑛−1
(ۂ𝑑/𝑛ہ)

, 𝑥𝑛
(ۂ𝑑/𝑛ہ)

𝑥𝑛+1
(ۂ𝑑/𝑛ہ)

, 𝑥𝑛+2
(ۂ𝑑/𝑛ہ)

,……, 𝑥2𝑛−1
(ۂ𝑑/𝑛ہ)

, 𝑥2𝑛
(ۂ𝑑/𝑛ہ)

 …………

𝑥𝑙
(ۂ𝑑/𝑛ہ)

, 𝑥𝑙+1
(ۂ𝑑/𝑛ہ)

,……, 𝑥𝑑−1
(ۂ𝑑/𝑛ہ)

, 𝑥𝑑
(ۂ𝑑/𝑛ہ)

𝑥1
(1)

, 𝑥2
(1)

, 𝑥3
(1)

,……, 𝑥𝑛−1
(1)

, 𝑥𝑛
(1)

𝑥𝑛+1, 𝑥𝑛+2,……, 𝑥2𝑛−1, 𝑥2𝑛

 …………

𝑥𝑙+1, 𝑥𝑙,……, 𝑥𝑑−1, 𝑥𝑑

𝑥1
(2)

, 𝑥2
(2)

, 𝑥3
(2)

,……, 𝑥𝑛−1
(2)

, 𝑥𝑛
(2)

𝑥𝑛+1
(2)

, 𝑥𝑛+2
(2)

,……, 𝑥2𝑛−1
(2)

, 𝑥2𝑛
(2)

 …………

𝑥𝑙 , 𝑥𝑙+1,……, 𝑥𝑑−1, 𝑥𝑑

 …………

Where :

𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛 : variables

𝑥𝑖
(𝑗)

: 𝑖𝑡ℎ variable of 𝑗𝑡ℎ subproblem

d: dimension of the problem

n: dimension of the subproblem

5

defined at every iteration t. When a particle's velocity is close to zero, it implies that

the particle is stuck in a local optimum. To avoid such scenarios, the particle can make

a leap using (𝑡) function. Each particle’s velocity is updated using equation (4), where

𝑐(𝑡) is the exponential coefficient, which depends on the iteration t, and is different

from the approach used in [18]. Additionally, the equation includes other parameters

such as w, the inertia weight, 𝑉𝑟 , a random vector, 𝑐1, and 𝑐2, all of which are defined

at the start of the run.

 𝜉(𝑡) = 𝑒1/(‖𝑝𝑖(𝑡)−𝑥𝑖(𝑡)‖+𝜖), 𝜖 is a small positive value. (3)

𝑣𝑖(𝑡 + 1) = 𝑤 𝑣𝑖(𝑡) + 𝑐(𝑡)𝜉 𝑉𝑟 + 𝑟1𝑐1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑟2𝑐2(𝑝𝑔(𝑡) − 𝑥𝑖(𝑡)) (4)

3.3 Dynamic parameters

In order to maintain a balance between exploration and exploitation among the swarm

population, a linearly decreasing exponential coefficient 𝑐(𝑡) is employed. This ap-

proach allows for larger jumps at the beginning of the search to facilitate exploration

of the entire search space, while smaller jumps are used later on to refine solutions in

specific regions. To update the coefficient 𝑐(𝑡) at each iteration t, equation (5) is used

as follows:

 𝑐(𝑡 + 1) = 𝑟𝑡 (5)

where r is a damping coefficient ∈]0,1].
The proposed algorithm integrates a dynamic inertia weight strategy, where 𝑤(𝑡)

value linearly decreases with each iteration based on equation (6). This approach re-

duces the particles' inclination towards continuous global search, while increasing their

propensity towards local search.

 𝑤(𝑡 + 1) = 𝑤(𝑡)𝑡 (6)

In summary, the proposed PSO-VDM algorithm achieves efficient local and global

search by decomposing the problem into smaller subproblems and preventing prema-

ture convergence using a jumping strategy based on an exponential function. The bal-

ance between exploitation and exploration is achieved by utilizing a linearly decreasing

dynamic exponential coefficient 𝑐(𝑡). To balance the inclination of particles towards

local and global search, PSO-VDM also integrates a dynamic inertia weight. The

pseudo-code of the PSO-VDM algorithm is presented in Algorithm 1.

Algorithm 1. Steps of the PSO-VDM algorithm

6

4 Experimental data and analysis

4.1 Experimental settings

In this section, we evaluate the performance of the PSO-VDM algorithm by evalu-

ating its effectiveness on 13 classical functions commonly used by researchers. Fur-

thermore, we compare our results with those of other benchmark algorithms to validate

the efficiency of our approach. Tables 1-2 list these benchmark functions and provide

information such as the dimension of the function (D), the boundary of the function's

search space (Column 2), and the optimum value 𝑓𝑚𝑖𝑛. Despite their simplicity, these

benchmark functions are valuable for evaluating the effectiveness of the PSO-VDM

algorithm. The scalable problems are divided into two categories: unimodal functions

(𝑓1 − 𝑓7)(Table1) and multimodal functions (𝑓8 − 𝑓13)(Table 2). The algorithm's ex-

ploitation search and convergence are well-suited for unimodal functions that have only

Initialization

1: Set the initial parameters

2: Assign random initial values to the particles' posi-

tions and velocities

3: Assign the first best position values to the parti-

cle's current position

4: Evaluate the fitness values of the particles to de-

termine the global best position

Update of particle position and velocity

5: while the full dimension of the problem is not

reached do

6: Consider only n variables of the problem.

7: Apply equations (4) and (2) to update the particle's

velocity and position, respectively

8: Apply position and velocity limits

Update of best global and personal positions

9: Update the global and best positions

10: Apply equation (5) to update the exponential coef-

ficient

11: Apply equation (6) to update the inertia weight co-

efficient

12: Consider n additional variables of the problem

13: end while

Convergence procedure

14: Iterate through steps 5 to 13 until the maximum

number of iterations is reached

7

one global optimum. On the other hand, multimodal functions, with multiple local op-

tima, are useful for the exploration search.

Table 1. Description of unimodal functions.

D
Search

space
𝒇𝒎𝒊𝒏 𝒇 Name

30

[−100,100] 0 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑑

𝑖=1 Sphere Function

[−10,10] 0 𝑓2(𝑥) = ∑ |𝑥𝑖|
𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1 Schwefel's Problem 2.22

[−100,100] 0 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1)

2𝑑
𝑖=1 Schwefel's Problem 1.2

[−100,100] 0 𝑓4(𝑥) = 𝑚𝑎𝑥|𝑥𝑖| , 0 ≤ 𝑖 ≤ 𝑑 Schwefel's Problem 2.21

[−30,30] 0 𝑓5(𝑥) = ∑ (100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑

𝑖=1 Rosenbrock Function

[−100,100] 0 𝑓6(𝑥) = ∑ 𝑥𝑖ہ) + 2𝑑(ۂ0.5
𝑖=1 Step Function

[−1.28,1.28] 0 𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4𝑑

𝑖=1 + 𝑟𝑎𝑛𝑑[0.1) Noise Function 'Quartic'

Table 2. Description of multimodal functions.

D
Search

space
𝒇𝒎𝒊𝒏 𝒇 Name

30

[−500,500] −1.25e+04 𝑓8(𝑥) = 418.9829 ∙ 𝑑 − ∑ 𝑥𝑖𝑠𝑖𝑛(√𝑥𝑖)
𝑑
𝑖=1 Schwefel's Function

[−5.12,5.12] 0 𝑓9(𝑥) = ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)𝑑

𝑖=1 Rastrigin's Function

[−32,32] 0
𝑓10(𝑥) = −20𝑒𝑥𝑝 (−0.2√

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1) −

𝑒𝑥𝑝 (
1

𝑑
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖

𝑑
𝑖=1) + 20 + 𝑒

Ackley's Function

[−600,600]
0 𝑓11(𝑥) =

1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 + 1 Griewank Function

[−50,50] 0

𝑓12(𝑥) =
𝜋

𝑑
{10𝑠𝑖𝑛2(𝜋𝑦𝑖) + ∑ (𝑦𝑖 − 1)2 [1 +𝑑−1

𝑖=1

10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑑 − 1)2} +

 ∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1

where 𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1),

𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {
𝑘(𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 > 𝑎

0, −𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 < 𝑎

Generalized Penal-

ized Function 1

[−50,50] 0

𝑓13=0.1{𝑠𝑖𝑛2(3𝜋𝑥𝑖) + ∑ (𝑥𝑖 − 1)2 [1 +𝑑
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑑 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑖)]} +

 ∑ 𝑢(𝑥𝑖 , 5,100,4)𝑛
𝑖=1

Generalized Penal-

ized Function 2

4.2 Benchmark problems

The performance of PSO-VDM is evaluated against seven state-of-the-art algo-

rithms: Chaotic Grey Wolf Optimizer (Chaotic GWO) [19], Adaptive Differential Evo-

lution (JADE) [20], Improved Moth-Flame Optimization (IMFO) algorithm [21],

Whale Optimization Algorithm (WOA) [22], Improved Equilibrium Optimization Al-

gorithm (IEOA) [23], Cellular Genetic Algorithm (cGA) [24], and Clerc's PSO (with

parameters 𝑤 = 𝜒 ≈ 0.7298, 𝑐1 = 2 𝑎𝑛𝑑 𝑐2 = 2). In all experiments conducted, the

termination criterion is based on a maximum number of function evaluations known as

8

Max_FES. To ensure a fair comparison, we set the population size N and Max_FES to

30 and 30000, respectively. In this paper, the proposed algorithm's parameter settings

are presented in Table 3, which includes the parameters utilized in updating the velocity

equation, such as the exponential coefficient, cognitive and social parameters, inertia

weight, and damping coefficient. Additionally, the subproblem's number of variables,

denoted as 𝑛, is set to 5. Tables 4-5 present the comparison results for each experiment,

including the standard deviation (S.D.) and the average value (Avg.). The best-perform-

ing algorithm's results are highlighted in bold for easy identification.

Table 3. Parameter settings of the proposed algorithm.

Parameter Settings

𝑐 = 2 Exponential coefficient

𝑐1 = 2 Cognitive parameter

𝑐2 = 2 Social parameter

𝑤 = 0.9 Inertia weight

𝑟 = 0.05 Damping coefficient

𝑛 = 5 Number of variables of a subproblem

Table 4. Comparison results for unimodal functions.

f
Results PSO-

VDM

Chaotic

GWO
IEOA JADE IMFO WOA cGA PSO

𝑓1
Avg.

S.D.

0.00e+00

0.00e+00

6.83e−32

3.70e−31

2.78e−21

0.00e+00

1.8e–60

8.40e–60

5.14e−53

2.80e−52

1.41e−30

4.91e−30

1.22e−01

3.80e−02

6.29e+02

3.45e+02

𝑓2
Avg.

S.D.

0.00e+00

0.00e+00

1.83e−19

1.00e−18

1.95e−26

2.03e−26

1.80e–25

8.80e–25

1.35e−27

6.78e−27

1.06e−21

2.39e−21

8.33e−02

1.60e−02

9.31e+01

3.84e+01

𝑓3
Avg.

S.D.

0.00e+00

0.00e+00

5.79e−08

1.60e−07

2.52e−13

7.04e−13

5.70e–61

2.70e–60

2.35e−14

4.04e−14

5.39e−07

2.93e−06

2.33e+03

7.80e+02

2.22e+03

1.17e+03

𝑓4
Avg.

S.D.

0.00e+00

0.00e+00

4.67e−08

2.40e−07

1.03e−13

1.87e−13

8.20e–24

4.00e–23

1.59e−14

2.75e−14

7.26e−02

3.98e−01

2.86e+00

5.40e−01

1.50e+01

3.75e+00

𝑓5
Avg.

S.D.

8.77e−06

3.50e−05

2.14e+01

7.20e−01

2.54e+01

2.18e-01

8.00e–02

5.60e–01

7.98e−01

1.62e+00

2.79e+01

7.64e−01

2.01e+02

4.40e+02

5.04e+04

5.24e+04

𝑓6
Avg.

S.D.

0.00e+00

0.00e+00

0.00e+00

0.00e+00

1.62e−05

2.00e−05

2.90e+00

1.20e+00

0.00e+00

0.00e+00

3.12e+00

5.32e−01

0.00e+00

0.00e+00

9.46e+02

5.00e+02

𝑓7
Avg.

S.D.

0.00e+00

0.00e+00

0.00e+00

0.00e+00

7.71e-04

5.05e−04

6.40e–04

2.50e–04

4.35e−03

2.81e−03

1.43e−03

1.15e−03

2.91e−02

8.90e−03

2.64e−02

2.56e−02

According to Tables 4-5, the results demonstrate that PSO-VDM consistently out-

performs the other algorithms on unimodal functions 𝑓1 − 𝑓7, showcasing its superior

exploitation potential compared to the other methods. Furthermore, for multimodal

functions 𝑓8 − 𝑓13, PSO-VDM achieves the best results on 𝑓9 − 𝑓11, secures the second-

best result on 𝑓8, and yields slightly inferior results on 𝑓12 − 𝑓13 compared to the top-

performing algorithm (IMFO) and (JADE). These results indicate that PSO-VDM has

a strong ability to explore the search space thoroughly and effectively.

9

Table 5. Comparison results for unimodal functions.

f
Results PSO-

VDM

Chaotic

GWO
IEOA JADE IMFO WOA cGA PSO

𝑓8
Avg.

S.D.

−1.24e+04

8.81e+02

−7.01e+03

1.50e+03

−1.07e+04

4.80e+02

−1.25e+04

2.30e−05

−3.62e+03

2.86e+02

−5.08e+03

6.96e+02

−1.21e+04

1.90e+02

−6.28e+03

6.53e+02

𝑓9
Avg.

S.D.

0.00e+00

0.00e+00

1.02e+01

9.80e+00

0.00e+00

0.00e+00

1.00e−04

6.00e−05

4.08e+00

1.72e+00

0.00e+00

0.00e+00

8.21e−02

 3.90e−02

6.48e+01

2.55e+01

𝑓10
Avg.

S.D.

8.88e−16

0.00e+00

1.30e−14

7.50e−15

7.16e−15

1.53e−15

8.20e–10

6.90e−10

4.56e−15

6.49e−16

7.40e+00

9.90e+00

8.91e−02

 1.80e−02

7.74e+00

1.34e+00

𝑓11
Avg.

S.D.

0.00e+00

0.00e+00

3.67e−03

6.00e−03

0.00e+00

0.00e+00

9.90e−08

6.00e−07

8.01e−02

3.56e−02

2.89e−04

1.59e−03

1.89e−01

 5.10e−02

 6.35e+00

 3.28e+00

𝑓12
Avg.

S.D.

1.39e−09

4.67e−09

2.53e−03

2.70e−03

5.71e−07

6.15e−07

4.60e–17

1.90e–16

4.72e−32

2.46e−34

3.40e−01

2.15e−01

5.57e−04

4.20e−04

 1.12e+01

 6.24e+00

𝑓13
Avg.

S.D.

4.21e−12

4.86e−12

5.99e−03

2.80e−03

1.31e−02

3.13e−02

2.00e–16

6.50e–16

1.35e−32

5.57e−48

1.89e+00

2.66e−01

9.05e−03

 5.20e−03

 9.00e+03

 3.43e+04

4.3 Algorithm complexity

In this section, we provide an analysis of the complexity of our PSO-VDM algorithm,

as evaluated in the CEC 2020 competition for dimensions D = {5, 10, 15} [25]. The

experiments are conducted using Matlab R2020a on a PC with an 8 GB RAM and

i5CPU processor with a 1.9 GHz Core (TM). As outlined in [25], the algorithm com-

plexity is determined by evaluating 𝑇0, which is the time taken to execute the following

test problem:

𝑧 = 0.55
for 𝑖 = 1: 1000000

𝑧 = 𝑧 + 𝑧; 𝑧 = 𝑧 2⁄ ; 𝑧 = 𝑧 ∗ 𝑧; 𝑧 = 𝑠𝑞𝑟𝑡(𝑧); 𝑧 = log(𝑧);

𝑧 = exp(𝑧); 𝑧 = 𝑧 (𝑧 + 2)⁄ ;

end

𝑇1 represents the time required for computing 𝑓1 over 200,000 Function Evaluations

(FES), while 𝑇2 represents the time taken to execute PSO-VDM for 200,000 FES of 𝑓1

in D dimensions, and 𝑇2̂ represents the mean of 𝑇2 calculated from five independent

runs. The complexity of algorithm is calculated by the expression
𝑇2̂−𝑇1

𝑇0
. Table 6 sum-

marizes the results obtained, which show that the computational time increases linearly

with an increase in the problem's dimension.

Table 6. Algorithm Complexity.

𝐷 𝑇0 𝑇1 𝑇2̂
𝑇2̂ − 𝑇1

𝑇0

5
0.0394

1,9425 10,4330 215,49

10 2,0828 10,7346 219,58

10

4.4 Statistical analysis

Table 6 summarizes the results of the validation studies presented in Tables 4-5,

which include all pairwise comparisons involving PSO-VDM and its competitive algo-

rithms. The table uses symbols (+/-/=) to indicate whether PSO-VDM performs better

than, worse than, or similar to the compared algorithm. The bolded numbers indicate

the functions for which PSO-VDM outperforms the corresponding algorithm.

Table 7 clearly shows that PSO-VDM outperforms the other competitive algorithms

in terms of convergence across the two diverse problem categories. It is worth noting,

however, that JADE and IFMO exhibit better performance than PSO-VDM on three

out of six functions and two out of six functions, respectively, in the multimodal bench-

mark problems. Nevertheless, our method remains unbeaten in terms of unimodal func-

tions.

Table 7. A summary of the statistical results.

Problem

category

PSO-

VDM

Chaotic

GWO
IEOA JADE IMFO WOA cGA PSO

Unimodal +/−/= 5/0/2 7/0/0 7/0/0 6/0/1 7/0/0 6/0/1 7/0/0

Multimodal +/−/= 6/0/0 4/0/2 3/3/0 4/2/0 5/0/1 6/0/0 6/0/0

To evaluate the validity of the results and compare the performance of PSO-VDM

against other competitive algorithms, the test of Wilcoxon signed is employed with a

significance level of 5%. Table 8 displays the z-value and p-value for the comparison

of PSO-VDM with other optimizers. A p-value greater than 0.05 indicates that there is

no significant difference in the results between the two algorithms. PSO-VDM outper-

forms the other algorithms significantly, as indicated by the p-values of only two com-

parisons (PSO-VDM vs. JADE and PSO-VDM vs. IFMO) being greater than 0.05

(marked in bold in Table 8).

Among all the approaches and for all types of functions, PSO-VDM is ranked first

in the Friedman mean rank. The test of Friedman is employed with a 5% significance

level, and the p-value obtained (i.e., 2.1268e−9 as shown in Table 8) indicates that the

results of PSO-VDM are significantly better than those of other algorithms. Thus, PSO-

VDM is an effective optimization technique with a strong ability to balance the explo-

ration and exploitation of the search space.

15 2,8293 11,8506 228,96

11

Table 8. A summary of the statistical results.

5 Conclusion

In this paper, a new optimization algorithm called Particle Swarm Optimization-

based-Variables Decomposition Method (PSO-VDM) is introduced. The objective of

the PSO-VDM algorithm is to improve the overall optimization performance of the

PSO by utilizing a decomposition technique to divide the problem into smaller sub-

problems with a semi-random initialization of variables. The algorithm's performance

is evaluated using 13 test functions, and the results prove that the PSO-VDM algorithm

is competitive with other popular heuristics such as GWO, JADE, and GA.

The PSO-VDM algorithm demonstrates superior exploitation capabilities for uni-

modal functions and strong exploration abilities for multimodal functions. The statisti-

cal analysis confirms that the proposed algorithm has a good balance between exploit-

ing and exploring the search space.

One potential research perspective is to investigate the limitations of PSO-VDM re-

garding solution quality and computation time. To this end, it would be valuable to

assess the effectiveness of the proposed approach when applied to large-scale optimi-

zation problems. Another potential research direction involves the hybridization of

PSO-VDM with other metaheuristics for enhancing its performance.

References

1. Bansal, J.C., Singh, P.K., Pal, N.R. eds: Evolutionary and Swarm Intelligence Algorithms.

Springer International Publishing, Cham (2019)

2. Zhao, W., Wang, H., Geng, J., Hu, W., Zhang, Z., Zhang, G.: Multi-Objective Weather

Routing Algorithm for Ships Based on Hybrid Particle Swarm Optimization. J. Ocean Univ.

China. 21, 28–38 (2022). https://doi.org/10.1007/s11802-022-4709-8

3. Duan, B., Guo, C., Liu, H.: A hybrid genetic-particle swarm optimization algorithm for

multi-constraint optimization problems. Soft Comput. 26, 11695–11711 (2022).

https://doi.org/10.1007/s00500-022-07489-8

4. Kassoul, K., Belhaouari, S.B., Cheikhrouhou, N.: Dynamic Cognitive-Social Particle Swarm

Optimization. In: 2021 7th International Conference on Automation, Robotics and

Method Rank
Mean rank of

Friedman

z-value

(PSO-VDM versus)

p-value

(PSO-VDM versus)

PSO-VDM 1 1,77 - -

Chaotic GWO 5 4,50 -2,588733 0,009633

IEOA 4 3,96 -2,934058 0,003346

JADE 2 2,92 -1,432656 0,151956

IFMO 3 3,54 -1,712199 0,086860

WOA 6 5,69 -3,059412 0,002218

cGA 7 5,92 -3,109912 0,001871

PSO 8 7,69 -3,179797 0,001474

p-value 2,1268e−9 Wilcoxon signed test

12

Applications (ICARA). pp. 200–205, 04-06 February (2021). doi:

10.1109/ICARA51699.2021.9376550

5. Sahoo, L., Bhunia, A.K., Pal, P., Bala, S.S.: Tournament constriction coefficient based par-

ticle swarm optimization (TPSO-Co) for engineering design optimization problems. Int J

Syst Assur Eng Manag. (2022). https://doi.org/10.1007/s13198-022-01824-w

6. Bas, E., Egrioglu, E., Kolemen, E.: Training simple recurrent deep artificial neural network

for forecasting using particle swarm optimization. Granul. Comput. 7, 411–420 (2022).

https://doi.org/10.1007/s41066-021-00274-2

7. Pashaei, E., Pashaei, E.: A fusion approach based on black hole algorithm and particle swarm

optimization for image enhancement. Multimed Tools Appl. 82, 297–325 (2023).

https://doi.org/10.1007/s11042-022-13275-3

8. Figueroa-García, J.C., Neruda, R., Hernandez–Pérez, G.: A genetic algorithm for multivar-

iate missing data imputation. Information Sciences. 619, 947–967 (2023).

https://doi.org/10.1016/j.ins.2022.11.037

9. Kavitha, R., Jothi, D.K., Saravanan, K., Swain, M.P., Gonzáles, J.L.A., Bhardwaj, R.J., Ad-

omako, E.: Ant Colony Optimization-Enabled CNN Deep Learning Technique for Accurate

Detection of Cervical Cancer. BioMed Research International. 2023, e1742891 (2023).

https://doi.org/10.1155/2023/1742891

10. Cheng, Z., Song, H., Zheng, D., Zhou, M., Sun, K.: Hybrid firefly algorithm with a new

mechanism of gender distinguishing for global optimization. Expert Systems with Applica-

tions. 120027 (2023). https://doi.org/10.1016/j.eswa.2023.120027

11. Kazikova, A., Pluhacek, M., Viktorin, A., Senkerik, R.: New Running Technique for the

Bison Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tade-

usiewicz, R., and Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. pp. 417–

426. Springer International Publishing, Cham (2018). doi:10.1007/978-3-319-91253-0_39

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-

international conference on neural networks. pp. 1942–1948. IEEE (1995).

doi:10.1109/ICNN.1995.488968

13. Taherkhani, M., Safabakhsh, R.: A novel stability-based adaptive inertia weight for particle

swarm optimization. Applied Soft Computing. 38, 281–295 (2016).

https://doi.org/10.1016/j.asoc.2015.10.004

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE international

conference on evolutionary computation proceedings. IEEE world congress on computa-

tional intelligence (Cat. No. 98TH8360). pp. 69–73. IEEE, 04-09 May (1998).

doi:10.1109/ICEC.1998.699146

15. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm

optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99

(Cat. No. 99TH8406). pp. 1951–1957. IEEE, 6-9 July (1999). doi:

10.1109/CEC.1999.785513

16. Liu, H., Zhang, X.-W., Tu, L.-P.: A modified particle swarm optimization using adaptive

strategy. Expert Systems with Applications. 152, 113353 (2020).

https://doi.org/10.1016/j.eswa.2020.113353

17. Rehman, A.U., Islam, A., Belhaouari, S.B.: Multi-cluster jumping particle swarm optimiza-

tion for fast convergence. IEEE Access. 8, 189382-189394, (2020). doi:

10.1109/ACCESS.2020.3031003

18. Kassoul, K., Zufferey, N., Cheikhrouhou, N., Brahim Belhaouari, S.: Exponential Particle

Swarm Optimization for Global Optimization. IEEE Access. 10, 78320–78344 (2022).

https://doi.org/10.1109/ACCESS.2022.3193396

https://doi.org/10.1109/ICARA51699.2021.9376550
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.asoc.2015.10.004
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/CEC.1999.785513
https://doi.org/10.1109/ACCESS.2020.3031003

13

19. Lu, C., Gao, L., Li, X., Hu, C., Yan, X., Gong, W.: Chaotic-based grey wolf optimizer for

numerical and engineering optimization problems. Memetic Computing. 12, 371–398

(2020). https://doi.org/10.1007/s12293-020-00313-6

20. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external

archive. IEEE Transactions on evolutionary computation. 13, 945–958 (2009).

doi:10.1109/TEVC.2009.2014613

21. Pelusi, D., Mascella, R., Tallini, L., Nayak, J., Naik, B., Deng, Y.: An Improved Moth-Flame

Optimization algorithm with hybrid search phase. Knowledge-Based Systems. 191, 105277

(2020). https://doi.org/10.1016/j.knosys.2019.105277

22. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Advances in engineering soft-

ware. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

23. Shaheen, A.M., Elsayed, A.M., El-Sehiemy, R.A., Abdelaziz, A.Y.: Equilibrium optimiza-

tion algorithm for network reconfiguration and distributed generation allocation in power

systems. Applied Soft Computing. 98, 106867 (2021).

https://doi.org/10.1016/j.asoc.2020.106867

24. Alba, E., Dorronsoro, B.: A hybrid cellular genetic algorithm for the capacitated vehicle

routing problem. Engineering Evolutionary Intelligent Systems. 379–422 (2008).

doi:10.1007/978-3-540-75396-4_14

25. C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y. Qu, N. H. Awad and

P. Biswas, Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session

and Competition on Single Objective Bound Constrained Numerical Optimization, Tech-

nical Report 201911, Computational Intelligence Laboratory, Zhengzhou University,

Zhengzhou China and Technical Report, Nanyang Technological University, Singapore,

November 2019.

https://doi.org/10.1109/TEVC.2009.2014613
https://doi.org/10.1016/j.knosys.2019.105277
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.asoc.2020.106867

